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(set-logic QF_BV)
(declare-const addr_of_plus_one (_ BitVec 32))
(declare-const plus_one (_ BitVec 32))
(declare-const addr_of_minus_one (_ BitVec 32))
(declare-const minus_one (_ BitVec 32))
(push)
(assert (and (bvult (_ bv1 32) (bvneg (_ bv1 32))) 
true))
(check-sat)
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BUT OFTEN…
(set-logic UF)
…
(declare-fun Btwn ((Map (Loc Node) 
(Loc Node)) (Loc Node) (Loc Node) 
(Loc Node)) Bool)
…
(assert (forall ((?f (Map (Loc 
Node) (Loc Node))) (?x (Loc Node)) 
(?y (Loc Node))) (or (not (= (read 
?f ?x) ?x)) (not (Btwn ?f ?x ?y ?
y)) (= ?x ?y))))
…
(assert (or (and (= sk_?XNode_5 
(lseg_footprint next b null)) 
(Btwn next b null null)) (not 
(lseg next b null sk_?XNode_5))))
…
(check-sat)
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can help them further improve the completeness and performance of today’s quantifier
instantiation modules.

Related work. Sofronie-Stokkermans [36] introduced local theory extensions as a gen-
eralization of locality in equational theories [15, 18]. Further generalizations include
Psi-local theories [21], which can describe arbitrary theory extensions that admit finite
quantifier instantiation. The formalization of our algorithm targets local theory exten-
sions, but we briefly describe how it can be generalized to handle Psi-locality. The
original decision procedure for local theory extensions presented in [36], which is im-
plemented in H-Pilot [22], eagerly generates all instances of extension axioms upfront,
before the base theory solver is called. As we show in our experiments, eager instanti-
ation is prohibitively expensive for many local theory extensions that are of interest in
verification because it results in a high degree polynomial blowup in the problem size.

In [24], Swen Jacobs proposed an incremental instantiation algorithm for local
theory extensions. The algorithm is a variant of model-based quantifier instantiation
(MBQI). It uses the base theory solver to incrementally generate partial models from
which relevant axiom instances are extracted. The algorithm was implemented as a
plug-in to Z3 and experiments showed that it helps to reduce the overall number of
axiom instances that need to be considered. However, the benchmarks were artificially
generated. Jacob’s algorithm is orthogonal to ours as the focus of this paper is on how
to use SMT solvers for deciding local theory extensions without adding new substantial
functionality to the solvers. A combination with this approach is feasible as we discuss
in more detail below.

Other variants of MBQI include its use in the context of finite model finding [33],
and the algorithm described in [17], which is implemented in Z3. This algorithm is
complete for the so-called almost uninterpreted fragment of first-order logic. While this
fragment is not sufficiently expressive for the local theory extensions that appear in our
benchmarks, it includes important fragments such as Effectively Propositional Logic
(EPR). In fact, we have also experimented with a hybrid approach that uses our E-
matching-based algorithm to reduce the benchmarks first to EPR and then solves them
with Z3’s MBQI algorithm.

E-matching was first described in [28], and since has been implemented in vari-
ous SMT solvers [10, 16]. In practice, user-provided triggers can be given as hints for
finer grained control over quantifier instantiations in these implementations. More re-
cent work [13] has made progress towards formalizing the semantics of triggers for the
purposes of specifying decision procedures for a number of theories. A more general
but incomplete technique [34] addresses the prohibitively large number of instantiations
produced by E-matching by prioritizing instantiations that lead to ground conflicts.

2 Example

We start our discussion with a simple example that illustrates the basic idea behind local
theory extensions. Consider the following set of ground literals

G = {a+ b = 1, f(a) + f(b) = 0}.
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4 Bansal et. al

We interpret G in the theory of linear integer arithmetic and a monotonically increasing
function f : Z ! Z. One satisfying assignment for G is:

a = 0, b = 1, f(x) = {�1 if x  0, 1 if x > 0}. (1)

We now explain how we can use an SMT solver to conclude that G is indeed satisfiable
in the above theory.

SMT solvers commonly provide inbuilt decision procedures for common theories
such as the theory of linear integer arithmetic (LIA) and the theory of equality over unin-
terpreted functions (UF). However, they do not natively support the theory of monotone
functions. The standard way to enforce f to be monotonic is to axiomatize this property,

K = 8x, y. x  y =) f(x)  f(y), (2)

and then let the SMT solver check if G[{K} is satisfiable via a reduction to its natively
supported theories. In our example, the reduction target is the combination of LIA and
UF, which we refer to as the base theory, denoted by T0. We refer to the axiom K as a
theory extension of the base theory and to the function symbol f as an extension symbol.

Most SMT solvers divide the work of deciding ground formulas G in a base theory
T0 and axioms K of theory extensions between different modules. A quantifier module
looks for substitutions to the variables within an axiom K, x and y, to some ground
terms, t1 and t2. We denote such a substitution as � = {x 7! t1, y 7! t2} and the
instance of an axiom K with respect to this substitution as K�. The quantifier module
iteratively adds the generated ground instances K� as lemmas to G until the base theory
solver derives a contradiction. However, if G is satisfiable, as in our case, then the
quantifier module does not know when to stop generating instances of K, and the solver
may diverge, effectively enumerating an infinite model of G.

For a local theory extension, we can syntactically restrict the instances K� that need
to be considered before concluding that G is satisfiable to a finite set of candidates.
More precisely, a theory extension is called local if in order to decide satisfiability of
G[ {K}, it is sufficient to consider only those instances K� in which all ground terms
already occur in G and K. The monotonicity axiom K is a local theory extension of T0.
The local instances of K and G are:

K�1 = a  b =) f(a)  f(b) where �1 = {x 7! a, y 7! b},
K�2 = b  a =) f(b)  f(a) where �2 = {x 7! b, y 7! a},
K�3 = a  a =) f(a)  f(a) where �3 = {x 7! a, y 7! a}, and
K�4 = b  b =) f(b)  f(b) where �4 = {x 7! b, y 7! b}.

Note that we do not need to instantiate x and y with other ground terms in G, such as 0
and 1. Adding the above instances to G yields

G

0 = G [ {K�1,K�2,K�3,K�4}.

which is satisfiable in the base theory. Since K is a local theory extension, we can
immediately conclude that G [ {K} is also satisfiable.
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terpreted functions (UF). However, they do not natively support the theory of monotone
functions. The standard way to enforce f to be monotonic is to axiomatize this property,

K = 8x, y. x  y =) f(x)  f(y), (2)

and then let the SMT solver check if G[{K} is satisfiable via a reduction to its natively
supported theories. In our example, the reduction target is the combination of LIA and
UF, which we refer to as the base theory, denoted by T0. We refer to the axiom K as a
theory extension of the base theory and to the function symbol f as an extension symbol.

Most SMT solvers divide the work of deciding ground formulas G in a base theory
T0 and axioms K of theory extensions between different modules. A quantifier module
looks for substitutions to the variables within an axiom K, x and y, to some ground
terms, t1 and t2. We denote such a substitution as � = {x 7! t1, y 7! t2} and the
instance of an axiom K with respect to this substitution as K�. The quantifier module
iteratively adds the generated ground instances K� as lemmas to G until the base theory
solver derives a contradiction. However, if G is satisfiable, as in our case, then the
quantifier module does not know when to stop generating instances of K, and the solver
may diverge, effectively enumerating an infinite model of G.

For a local theory extension, we can syntactically restrict the instances K� that need
to be considered before concluding that G is satisfiable to a finite set of candidates.
More precisely, a theory extension is called local if in order to decide satisfiability of
G[ {K}, it is sufficient to consider only those instances K� in which all ground terms
already occur in G and K. The monotonicity axiom K is a local theory extension of T0.
The local instances of K and G are:

K�1 = a  b =) f(a)  f(b) where �1 = {x 7! a, y 7! b},
K�2 = b  a =) f(b)  f(a) where �2 = {x 7! b, y 7! a},
K�3 = a  a =) f(a)  f(a) where �3 = {x 7! a, y 7! a}, and
K�4 = b  b =) f(b)  f(b) where �4 = {x 7! b, y 7! b}.

Note that we do not need to instantiate x and y with other ground terms in G, such as 0
and 1. Adding the above instances to G yields

G

0 = G [ {K�1,K�2,K�3,K�4}.

which is satisfiable in the base theory. Since K is a local theory extension, we can
immediately conclude that G [ {K} is also satisfiable.

SAT:
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can help them further improve the completeness and performance of today’s quantifier
instantiation modules.

Related work. Sofronie-Stokkermans [36] introduced local theory extensions as a gen-
eralization of locality in equational theories [15, 18]. Further generalizations include
Psi-local theories [21], which can describe arbitrary theory extensions that admit finite
quantifier instantiation. The formalization of our algorithm targets local theory exten-
sions, but we briefly describe how it can be generalized to handle Psi-locality. The
original decision procedure for local theory extensions presented in [36], which is im-
plemented in H-Pilot [22], eagerly generates all instances of extension axioms upfront,
before the base theory solver is called. As we show in our experiments, eager instanti-
ation is prohibitively expensive for many local theory extensions that are of interest in
verification because it results in a high degree polynomial blowup in the problem size.

In [24], Swen Jacobs proposed an incremental instantiation algorithm for local
theory extensions. The algorithm is a variant of model-based quantifier instantiation
(MBQI). It uses the base theory solver to incrementally generate partial models from
which relevant axiom instances are extracted. The algorithm was implemented as a
plug-in to Z3 and experiments showed that it helps to reduce the overall number of
axiom instances that need to be considered. However, the benchmarks were artificially
generated. Jacob’s algorithm is orthogonal to ours as the focus of this paper is on how
to use SMT solvers for deciding local theory extensions without adding new substantial
functionality to the solvers. A combination with this approach is feasible as we discuss
in more detail below.

Other variants of MBQI include its use in the context of finite model finding [33],
and the algorithm described in [17], which is implemented in Z3. This algorithm is
complete for the so-called almost uninterpreted fragment of first-order logic. While this
fragment is not sufficiently expressive for the local theory extensions that appear in our
benchmarks, it includes important fragments such as Effectively Propositional Logic
(EPR). In fact, we have also experimented with a hybrid approach that uses our E-
matching-based algorithm to reduce the benchmarks first to EPR and then solves them
with Z3’s MBQI algorithm.

E-matching was first described in [28], and since has been implemented in vari-
ous SMT solvers [10, 16]. In practice, user-provided triggers can be given as hints for
finer grained control over quantifier instantiations in these implementations. More re-
cent work [13] has made progress towards formalizing the semantics of triggers for the
purposes of specifying decision procedures for a number of theories. A more general
but incomplete technique [34] addresses the prohibitively large number of instantiations
produced by E-matching by prioritizing instantiations that lead to ground conflicts.

2 Example

We start our discussion with a simple example that illustrates the basic idea behind local
theory extensions. Consider the following set of ground literals

G = {a+ b = 1, f(a) + f(b) = 0}.

Theory of linear arithmetic.               monotonically increasing.
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We interpret G in the theory of linear integer arithmetic and a monotonically increasing
function f : Z ! Z. One satisfying assignment for G is:

a = 0, b = 1, f(x) = {�1 if x  0, 1 if x > 0}. (1)

We now explain how we can use an SMT solver to conclude that G is indeed satisfiable
in the above theory.

SMT solvers commonly provide inbuilt decision procedures for common theories
such as the theory of linear integer arithmetic (LIA) and the theory of equality over unin-
terpreted functions (UF). However, they do not natively support the theory of monotone
functions. The standard way to enforce f to be monotonic is to axiomatize this property,

K = 8x, y. x  y =) f(x)  f(y), (2)

and then let the SMT solver check if G[{K} is satisfiable via a reduction to its natively
supported theories. In our example, the reduction target is the combination of LIA and
UF, which we refer to as the base theory, denoted by T0. We refer to the axiom K as a
theory extension of the base theory and to the function symbol f as an extension symbol.

Most SMT solvers divide the work of deciding ground formulas G in a base theory
T0 and axioms K of theory extensions between different modules. A quantifier module
looks for substitutions to the variables within an axiom K, x and y, to some ground
terms, t1 and t2. We denote such a substitution as � = {x 7! t1, y 7! t2} and the
instance of an axiom K with respect to this substitution as K�. The quantifier module
iteratively adds the generated ground instances K� as lemmas to G until the base theory
solver derives a contradiction. However, if G is satisfiable, as in our case, then the
quantifier module does not know when to stop generating instances of K, and the solver
may diverge, effectively enumerating an infinite model of G.

For a local theory extension, we can syntactically restrict the instances K� that need
to be considered before concluding that G is satisfiable to a finite set of candidates.
More precisely, a theory extension is called local if in order to decide satisfiability of
G[ {K}, it is sufficient to consider only those instances K� in which all ground terms
already occur in G and K. The monotonicity axiom K is a local theory extension of T0.
The local instances of K and G are:

K�1 = a  b =) f(a)  f(b) where �1 = {x 7! a, y 7! b},
K�2 = b  a =) f(b)  f(a) where �2 = {x 7! b, y 7! a},
K�3 = a  a =) f(a)  f(a) where �3 = {x 7! a, y 7! a}, and
K�4 = b  b =) f(b)  f(b) where �4 = {x 7! b, y 7! b}.

Note that we do not need to instantiate x and y with other ground terms in G, such as 0
and 1. Adding the above instances to G yields

G

0 = G [ {K�1,K�2,K�3,K�4}.

which is satisfiable in the base theory. Since K is a local theory extension, we can
immediately conclude that G [ {K} is also satisfiable.

4 Bansal et. al

We interpret G in the theory of linear integer arithmetic and a monotonically increasing
function f : Z ! Z. One satisfying assignment for G is:

a = 0, b = 1, f(x) = {�1 if x  0, 1 if x > 0}. (1)

We now explain how we can use an SMT solver to conclude that G is indeed satisfiable
in the above theory.

SMT solvers commonly provide inbuilt decision procedures for common theories
such as the theory of linear integer arithmetic (LIA) and the theory of equality over unin-
terpreted functions (UF). However, they do not natively support the theory of monotone
functions. The standard way to enforce f to be monotonic is to axiomatize this property,

K = 8x, y. x  y =) f(x)  f(y), (2)

and then let the SMT solver check if G[{K} is satisfiable via a reduction to its natively
supported theories. In our example, the reduction target is the combination of LIA and
UF, which we refer to as the base theory, denoted by T0. We refer to the axiom K as a
theory extension of the base theory and to the function symbol f as an extension symbol.

Most SMT solvers divide the work of deciding ground formulas G in a base theory
T0 and axioms K of theory extensions between different modules. A quantifier module
looks for substitutions to the variables within an axiom K, x and y, to some ground
terms, t1 and t2. We denote such a substitution as � = {x 7! t1, y 7! t2} and the
instance of an axiom K with respect to this substitution as K�. The quantifier module
iteratively adds the generated ground instances K� as lemmas to G until the base theory
solver derives a contradiction. However, if G is satisfiable, as in our case, then the
quantifier module does not know when to stop generating instances of K, and the solver
may diverge, effectively enumerating an infinite model of G.

For a local theory extension, we can syntactically restrict the instances K� that need
to be considered before concluding that G is satisfiable to a finite set of candidates.
More precisely, a theory extension is called local if in order to decide satisfiability of
G[ {K}, it is sufficient to consider only those instances K� in which all ground terms
already occur in G and K. The monotonicity axiom K is a local theory extension of T0.
The local instances of K and G are:

K�1 = a  b =) f(a)  f(b) where �1 = {x 7! a, y 7! b},
K�2 = b  a =) f(b)  f(a) where �2 = {x 7! b, y 7! a},
K�3 = a  a =) f(a)  f(a) where �3 = {x 7! a, y 7! a}, and
K�4 = b  b =) f(b)  f(b) where �4 = {x 7! b, y 7! b}.

Note that we do not need to instantiate x and y with other ground terms in G, such as 0
and 1. Adding the above instances to G yields

G

0 = G [ {K�1,K�2,K�3,K�4}.

which is satisfiable in the base theory. Since K is a local theory extension, we can
immediately conclude that G [ {K} is also satisfiable.

4 Bansal et. al

We interpret G in the theory of linear integer arithmetic and a monotonically increasing
function f : Z ! Z. One satisfying assignment for G is:

a = 0, b = 1, f(x) = {�1 if x  0, 1 if x > 0}. (1)

We now explain how we can use an SMT solver to conclude that G is indeed satisfiable
in the above theory.

SMT solvers commonly provide inbuilt decision procedures for common theories
such as the theory of linear integer arithmetic (LIA) and the theory of equality over unin-
terpreted functions (UF). However, they do not natively support the theory of monotone
functions. The standard way to enforce f to be monotonic is to axiomatize this property,

K = 8x, y. x  y =) f(x)  f(y), (2)

and then let the SMT solver check if G[{K} is satisfiable via a reduction to its natively
supported theories. In our example, the reduction target is the combination of LIA and
UF, which we refer to as the base theory, denoted by T0. We refer to the axiom K as a
theory extension of the base theory and to the function symbol f as an extension symbol.

Most SMT solvers divide the work of deciding ground formulas G in a base theory
T0 and axioms K of theory extensions between different modules. A quantifier module
looks for substitutions to the variables within an axiom K, x and y, to some ground
terms, t1 and t2. We denote such a substitution as � = {x 7! t1, y 7! t2} and the
instance of an axiom K with respect to this substitution as K�. The quantifier module
iteratively adds the generated ground instances K� as lemmas to G until the base theory
solver derives a contradiction. However, if G is satisfiable, as in our case, then the
quantifier module does not know when to stop generating instances of K, and the solver
may diverge, effectively enumerating an infinite model of G.

For a local theory extension, we can syntactically restrict the instances K� that need
to be considered before concluding that G is satisfiable to a finite set of candidates.
More precisely, a theory extension is called local if in order to decide satisfiability of
G[ {K}, it is sufficient to consider only those instances K� in which all ground terms
already occur in G and K. The monotonicity axiom K is a local theory extension of T0.
The local instances of K and G are:

K�1 = a  b =) f(a)  f(b) where �1 = {x 7! a, y 7! b},
K�2 = b  a =) f(b)  f(a) where �2 = {x 7! b, y 7! a},
K�3 = a  a =) f(a)  f(a) where �3 = {x 7! a, y 7! a}, and
K�4 = b  b =) f(b)  f(b) where �4 = {x 7! b, y 7! b}.

Note that we do not need to instantiate x and y with other ground terms in G, such as 0
and 1. Adding the above instances to G yields

G

0 = G [ {K�1,K�2,K�3,K�4}.

which is satisfiable in the base theory. Since K is a local theory extension, we can
immediately conclude that G [ {K} is also satisfiable.

SAT:

Local if sufficient to instantiate such that all terms 
already exist in G or K.
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can help them further improve the completeness and performance of today’s quantifier
instantiation modules.

Related work. Sofronie-Stokkermans [36] introduced local theory extensions as a gen-
eralization of locality in equational theories [15, 18]. Further generalizations include
Psi-local theories [21], which can describe arbitrary theory extensions that admit finite
quantifier instantiation. The formalization of our algorithm targets local theory exten-
sions, but we briefly describe how it can be generalized to handle Psi-locality. The
original decision procedure for local theory extensions presented in [36], which is im-
plemented in H-Pilot [22], eagerly generates all instances of extension axioms upfront,
before the base theory solver is called. As we show in our experiments, eager instanti-
ation is prohibitively expensive for many local theory extensions that are of interest in
verification because it results in a high degree polynomial blowup in the problem size.

In [24], Swen Jacobs proposed an incremental instantiation algorithm for local
theory extensions. The algorithm is a variant of model-based quantifier instantiation
(MBQI). It uses the base theory solver to incrementally generate partial models from
which relevant axiom instances are extracted. The algorithm was implemented as a
plug-in to Z3 and experiments showed that it helps to reduce the overall number of
axiom instances that need to be considered. However, the benchmarks were artificially
generated. Jacob’s algorithm is orthogonal to ours as the focus of this paper is on how
to use SMT solvers for deciding local theory extensions without adding new substantial
functionality to the solvers. A combination with this approach is feasible as we discuss
in more detail below.

Other variants of MBQI include its use in the context of finite model finding [33],
and the algorithm described in [17], which is implemented in Z3. This algorithm is
complete for the so-called almost uninterpreted fragment of first-order logic. While this
fragment is not sufficiently expressive for the local theory extensions that appear in our
benchmarks, it includes important fragments such as Effectively Propositional Logic
(EPR). In fact, we have also experimented with a hybrid approach that uses our E-
matching-based algorithm to reduce the benchmarks first to EPR and then solves them
with Z3’s MBQI algorithm.

E-matching was first described in [28], and since has been implemented in vari-
ous SMT solvers [10, 16]. In practice, user-provided triggers can be given as hints for
finer grained control over quantifier instantiations in these implementations. More re-
cent work [13] has made progress towards formalizing the semantics of triggers for the
purposes of specifying decision procedures for a number of theories. A more general
but incomplete technique [34] addresses the prohibitively large number of instantiations
produced by E-matching by prioritizing instantiations that lead to ground conflicts.

2 Example

We start our discussion with a simple example that illustrates the basic idea behind local
theory extensions. Consider the following set of ground literals

G = {a+ b = 1, f(a) + f(b) = 0}.

Theory of linear arithmetic.               monotonically increasing.
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We interpret G in the theory of linear integer arithmetic and a monotonically increasing
function f : Z ! Z. One satisfying assignment for G is:

a = 0, b = 1, f(x) = {�1 if x  0, 1 if x > 0}. (1)

We now explain how we can use an SMT solver to conclude that G is indeed satisfiable
in the above theory.

SMT solvers commonly provide inbuilt decision procedures for common theories
such as the theory of linear integer arithmetic (LIA) and the theory of equality over unin-
terpreted functions (UF). However, they do not natively support the theory of monotone
functions. The standard way to enforce f to be monotonic is to axiomatize this property,

K = 8x, y. x  y =) f(x)  f(y), (2)

and then let the SMT solver check if G[{K} is satisfiable via a reduction to its natively
supported theories. In our example, the reduction target is the combination of LIA and
UF, which we refer to as the base theory, denoted by T0. We refer to the axiom K as a
theory extension of the base theory and to the function symbol f as an extension symbol.

Most SMT solvers divide the work of deciding ground formulas G in a base theory
T0 and axioms K of theory extensions between different modules. A quantifier module
looks for substitutions to the variables within an axiom K, x and y, to some ground
terms, t1 and t2. We denote such a substitution as � = {x 7! t1, y 7! t2} and the
instance of an axiom K with respect to this substitution as K�. The quantifier module
iteratively adds the generated ground instances K� as lemmas to G until the base theory
solver derives a contradiction. However, if G is satisfiable, as in our case, then the
quantifier module does not know when to stop generating instances of K, and the solver
may diverge, effectively enumerating an infinite model of G.

For a local theory extension, we can syntactically restrict the instances K� that need
to be considered before concluding that G is satisfiable to a finite set of candidates.
More precisely, a theory extension is called local if in order to decide satisfiability of
G[ {K}, it is sufficient to consider only those instances K� in which all ground terms
already occur in G and K. The monotonicity axiom K is a local theory extension of T0.
The local instances of K and G are:

K�1 = a  b =) f(a)  f(b) where �1 = {x 7! a, y 7! b},
K�2 = b  a =) f(b)  f(a) where �2 = {x 7! b, y 7! a},
K�3 = a  a =) f(a)  f(a) where �3 = {x 7! a, y 7! a}, and
K�4 = b  b =) f(b)  f(b) where �4 = {x 7! b, y 7! b}.

Note that we do not need to instantiate x and y with other ground terms in G, such as 0
and 1. Adding the above instances to G yields

G

0 = G [ {K�1,K�2,K�3,K�4}.

which is satisfiable in the base theory. Since K is a local theory extension, we can
immediately conclude that G [ {K} is also satisfiable.
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K�1 = a  b =) f(a)  f(b) where �1 = {x 7! a, y 7! b},
K�2 = b  a =) f(b)  f(a) where �2 = {x 7! b, y 7! a},
K�3 = a  a =) f(a)  f(a) where �3 = {x 7! a, y 7! a}, and
K�4 = b  b =) f(b)  f(b) where �4 = {x 7! b, y 7! b}.

Note that we do not need to instantiate x and y with other ground terms in G, such as 0
and 1. Adding the above instances to G yields

G

0 = G [ {K�1,K�2,K�3,K�4}.

which is satisfiable in the base theory. Since K is a local theory extension, we can
immediately conclude that G [ {K} is also satisfiable.

SAT:



Deciding Local Theory Extensions via E-matching 3

can help them further improve the completeness and performance of today’s quantifier
instantiation modules.

Related work. Sofronie-Stokkermans [36] introduced local theory extensions as a gen-
eralization of locality in equational theories [15, 18]. Further generalizations include
Psi-local theories [21], which can describe arbitrary theory extensions that admit finite
quantifier instantiation. The formalization of our algorithm targets local theory exten-
sions, but we briefly describe how it can be generalized to handle Psi-locality. The
original decision procedure for local theory extensions presented in [36], which is im-
plemented in H-Pilot [22], eagerly generates all instances of extension axioms upfront,
before the base theory solver is called. As we show in our experiments, eager instanti-
ation is prohibitively expensive for many local theory extensions that are of interest in
verification because it results in a high degree polynomial blowup in the problem size.

In [24], Swen Jacobs proposed an incremental instantiation algorithm for local
theory extensions. The algorithm is a variant of model-based quantifier instantiation
(MBQI). It uses the base theory solver to incrementally generate partial models from
which relevant axiom instances are extracted. The algorithm was implemented as a
plug-in to Z3 and experiments showed that it helps to reduce the overall number of
axiom instances that need to be considered. However, the benchmarks were artificially
generated. Jacob’s algorithm is orthogonal to ours as the focus of this paper is on how
to use SMT solvers for deciding local theory extensions without adding new substantial
functionality to the solvers. A combination with this approach is feasible as we discuss
in more detail below.

Other variants of MBQI include its use in the context of finite model finding [33],
and the algorithm described in [17], which is implemented in Z3. This algorithm is
complete for the so-called almost uninterpreted fragment of first-order logic. While this
fragment is not sufficiently expressive for the local theory extensions that appear in our
benchmarks, it includes important fragments such as Effectively Propositional Logic
(EPR). In fact, we have also experimented with a hybrid approach that uses our E-
matching-based algorithm to reduce the benchmarks first to EPR and then solves them
with Z3’s MBQI algorithm.

E-matching was first described in [28], and since has been implemented in vari-
ous SMT solvers [10, 16]. In practice, user-provided triggers can be given as hints for
finer grained control over quantifier instantiations in these implementations. More re-
cent work [13] has made progress towards formalizing the semantics of triggers for the
purposes of specifying decision procedures for a number of theories. A more general
but incomplete technique [34] addresses the prohibitively large number of instantiations
produced by E-matching by prioritizing instantiations that lead to ground conflicts.

2 Example

We start our discussion with a simple example that illustrates the basic idea behind local
theory extensions. Consider the following set of ground literals

G = {a+ b = 1, f(a) + f(b) = 0}.

4 Bansal et. al

We interpret G in the theory of linear integer arithmetic and a monotonically increasing
function f : Z ! Z. One satisfying assignment for G is:

a = 0, b = 1, f(x) = {�1 if x  0, 1 if x > 0}. (1)

We now explain how we can use an SMT solver to conclude that G is indeed satisfiable
in the above theory.

SMT solvers commonly provide inbuilt decision procedures for common theories
such as the theory of linear integer arithmetic (LIA) and the theory of equality over unin-
terpreted functions (UF). However, they do not natively support the theory of monotone
functions. The standard way to enforce f to be monotonic is to axiomatize this property,

K = 8x, y. x  y =) f(x)  f(y), (2)

and then let the SMT solver check if G[{K} is satisfiable via a reduction to its natively
supported theories. In our example, the reduction target is the combination of LIA and
UF, which we refer to as the base theory, denoted by T0. We refer to the axiom K as a
theory extension of the base theory and to the function symbol f as an extension symbol.

Most SMT solvers divide the work of deciding ground formulas G in a base theory
T0 and axioms K of theory extensions between different modules. A quantifier module
looks for substitutions to the variables within an axiom K, x and y, to some ground
terms, t1 and t2. We denote such a substitution as � = {x 7! t1, y 7! t2} and the
instance of an axiom K with respect to this substitution as K�. The quantifier module
iteratively adds the generated ground instances K� as lemmas to G until the base theory
solver derives a contradiction. However, if G is satisfiable, as in our case, then the
quantifier module does not know when to stop generating instances of K, and the solver
may diverge, effectively enumerating an infinite model of G.

For a local theory extension, we can syntactically restrict the instances K� that need
to be considered before concluding that G is satisfiable to a finite set of candidates.
More precisely, a theory extension is called local if in order to decide satisfiability of
G[ {K}, it is sufficient to consider only those instances K� in which all ground terms
already occur in G and K. The monotonicity axiom K is a local theory extension of T0.
The local instances of K and G are:

K�1 = a  b =) f(a)  f(b) where �1 = {x 7! a, y 7! b},
K�2 = b  a =) f(b)  f(a) where �2 = {x 7! b, y 7! a},
K�3 = a  a =) f(a)  f(a) where �3 = {x 7! a, y 7! a}, and
K�4 = b  b =) f(b)  f(b) where �4 = {x 7! b, y 7! b}.

Note that we do not need to instantiate x and y with other ground terms in G, such as 0
and 1. Adding the above instances to G yields

G

0 = G [ {K�1,K�2,K�3,K�4}.

which is satisfiable in the base theory. Since K is a local theory extension, we can
immediately conclude that G [ {K} is also satisfiable.

Theory of linear arithmetic.



Deciding Local Theory Extensions via E-matching 3

can help them further improve the completeness and performance of today’s quantifier
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original decision procedure for local theory extensions presented in [36], which is im-
plemented in H-Pilot [22], eagerly generates all instances of extension axioms upfront,
before the base theory solver is called. As we show in our experiments, eager instanti-
ation is prohibitively expensive for many local theory extensions that are of interest in
verification because it results in a high degree polynomial blowup in the problem size.

In [24], Swen Jacobs proposed an incremental instantiation algorithm for local
theory extensions. The algorithm is a variant of model-based quantifier instantiation
(MBQI). It uses the base theory solver to incrementally generate partial models from
which relevant axiom instances are extracted. The algorithm was implemented as a
plug-in to Z3 and experiments showed that it helps to reduce the overall number of
axiom instances that need to be considered. However, the benchmarks were artificially
generated. Jacob’s algorithm is orthogonal to ours as the focus of this paper is on how
to use SMT solvers for deciding local theory extensions without adding new substantial
functionality to the solvers. A combination with this approach is feasible as we discuss
in more detail below.

Other variants of MBQI include its use in the context of finite model finding [33],
and the algorithm described in [17], which is implemented in Z3. This algorithm is
complete for the so-called almost uninterpreted fragment of first-order logic. While this
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(EPR). In fact, we have also experimented with a hybrid approach that uses our E-
matching-based algorithm to reduce the benchmarks first to EPR and then solves them
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and then let the SMT solver check if G[{K} is satisfiable via a reduction to its natively
supported theories. In our example, the reduction target is the combination of LIA and
UF, which we refer to as the base theory, denoted by T0. We refer to the axiom K as a
theory extension of the base theory and to the function symbol f as an extension symbol.

Most SMT solvers divide the work of deciding ground formulas G in a base theory
T0 and axioms K of theory extensions between different modules. A quantifier module
looks for substitutions to the variables within an axiom K, x and y, to some ground
terms, t1 and t2. We denote such a substitution as � = {x 7! t1, y 7! t2} and the
instance of an axiom K with respect to this substitution as K�. The quantifier module
iteratively adds the generated ground instances K� as lemmas to G until the base theory
solver derives a contradiction. However, if G is satisfiable, as in our case, then the
quantifier module does not know when to stop generating instances of K, and the solver
may diverge, effectively enumerating an infinite model of G.

For a local theory extension, we can syntactically restrict the instances K� that need
to be considered before concluding that G is satisfiable to a finite set of candidates.
More precisely, a theory extension is called local if in order to decide satisfiability of
G[ {K}, it is sufficient to consider only those instances K� in which all ground terms
already occur in G and K. The monotonicity axiom K is a local theory extension of T0.
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Note that we do not need to instantiate x and y with other ground terms in G, such as 0
and 1. Adding the above instances to G yields
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which is satisfiable in the base theory. Since K is a local theory extension, we can
immediately conclude that G [ {K} is also satisfiable.

Theory of linear arithmetic.

G ∪ K[G] is satisfiable in LIA  
if and only if  

G is satisfiable in LIA+K

K[G]{



Deciding Local Theory Extensions via E-matching 3

can help them further improve the completeness and performance of today’s quantifier
instantiation modules.

Related work. Sofronie-Stokkermans [36] introduced local theory extensions as a gen-
eralization of locality in equational theories [15, 18]. Further generalizations include
Psi-local theories [21], which can describe arbitrary theory extensions that admit finite
quantifier instantiation. The formalization of our algorithm targets local theory exten-
sions, but we briefly describe how it can be generalized to handle Psi-locality. The
original decision procedure for local theory extensions presented in [36], which is im-
plemented in H-Pilot [22], eagerly generates all instances of extension axioms upfront,
before the base theory solver is called. As we show in our experiments, eager instanti-
ation is prohibitively expensive for many local theory extensions that are of interest in
verification because it results in a high degree polynomial blowup in the problem size.

In [24], Swen Jacobs proposed an incremental instantiation algorithm for local
theory extensions. The algorithm is a variant of model-based quantifier instantiation
(MBQI). It uses the base theory solver to incrementally generate partial models from
which relevant axiom instances are extracted. The algorithm was implemented as a
plug-in to Z3 and experiments showed that it helps to reduce the overall number of
axiom instances that need to be considered. However, the benchmarks were artificially
generated. Jacob’s algorithm is orthogonal to ours as the focus of this paper is on how
to use SMT solvers for deciding local theory extensions without adding new substantial
functionality to the solvers. A combination with this approach is feasible as we discuss
in more detail below.

Other variants of MBQI include its use in the context of finite model finding [33],
and the algorithm described in [17], which is implemented in Z3. This algorithm is
complete for the so-called almost uninterpreted fragment of first-order logic. While this
fragment is not sufficiently expressive for the local theory extensions that appear in our
benchmarks, it includes important fragments such as Effectively Propositional Logic
(EPR). In fact, we have also experimented with a hybrid approach that uses our E-
matching-based algorithm to reduce the benchmarks first to EPR and then solves them
with Z3’s MBQI algorithm.

E-matching was first described in [28], and since has been implemented in vari-
ous SMT solvers [10, 16]. In practice, user-provided triggers can be given as hints for
finer grained control over quantifier instantiations in these implementations. More re-
cent work [13] has made progress towards formalizing the semantics of triggers for the
purposes of specifying decision procedures for a number of theories. A more general
but incomplete technique [34] addresses the prohibitively large number of instantiations
produced by E-matching by prioritizing instantiations that lead to ground conflicts.

2 Example

We start our discussion with a simple example that illustrates the basic idea behind local
theory extensions. Consider the following set of ground literals

G = {a+ b = 1, f(a) + f(b) = 0}.
K[G] = {Kσ1, Kσ2, Kσ3, Kσ4}
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Recognizing Local Theory Extensions. There are two useful characterizations of local
theory extensions that can help users of SMT solvers in designing axiomatization that
are local. The first one is model-theoretic [15, 36]. Consider again the set of ground
clauses G0. When checking satisfiability of G0 in the base theory, the SMT solver may
produce the following model:

a = 0, b = 1, f(x) = {�1 if x = 0, 1 if x = 1, -1 otherwise}. (3)

This is not a model of the original G [ {K}. However, if we restrict the interpretation
of the extension symbol f in this model to the ground terms in G[ {K}, we obtain the
partial model

a = 0, b = 1, f(x) = {�1 if x = 0, 1 if x = 1, undefined otherwise}. (4)

This partial model can now be embedded into the model (1) of the theory extension.
If such embeddings of partial models of G0 to total models of G [ {K} always exist
for all sets of ground literals G, then K is a local theory extension of T0. The second
characterization of local theory extensions is proof-theoretic and states that a set of
axioms is a local theory extension if it is saturated under (ordered) resolution [4]. This
characterization can be used to automatically compute local theory extensions from
non-local ones [20].

Note that the locality property depends both on the base theory as well as the specific
axiomatization of the theory extension. For example, the following axiomatization of a
monotone function f over the integers, which is logically equivalent to equation (2) in
T0, is not local:

K = 8x. f(x)  f(x+ 1) .

Similarly, if we replace all inequalities in equation (2) by strict inequalities, then the
extension is no longer local for the base theory T0. However, if we replace T0 by a
theory in which  is a dense order (such as in linear real arithmetic), then the strict
version of the monotonicity axiom is again a local theory extension.

In the next two sections, we show how we can use the existing technology im-
plemented in quantifier modules of SMT solvers to decide local theory extensions. In
particular, we show how E-matching can be used to further reduce the number of axiom
instances that need to be considered before we can conclude that a given set of ground
literals G is satisfiable.

3 Preliminaries

Sorted first-order logic. We present our problem in sorted first-order logic with equality.
A signature ⌃ is a tuple (Sorts,⌦,⇧), where Sorts is a countable set of sorts and ⌦

and ⇧ are countable sets of function and predicate symbols, respectively. Each function
symbol f 2 ⌦ has an associated arity n � 0 and associated sort s1 ⇥ · · · ⇥ sn ! s0

with si 2 Sorts for all i  n. Function symbols of arity 0 are called constant symbols.
Similarly, predicate symbols P 2 ⇧ have an arity n � 0 and sort s1 ⇥ · · · ⇥ sn.
We assume dedicated equality symbols ⇡s 2 ⇧ with the sort s ⇥ s for all sorts s 2
Sorts, though we typically drop the explicit subscript. Terms are built from the function
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can help them further improve the completeness and performance of today’s quantifier
instantiation modules.

Related work. Sofronie-Stokkermans [36] introduced local theory extensions as a gen-
eralization of locality in equational theories [15, 18]. Further generalizations include
Psi-local theories [21], which can describe arbitrary theory extensions that admit finite
quantifier instantiation. The formalization of our algorithm targets local theory exten-
sions, but we briefly describe how it can be generalized to handle Psi-locality. The
original decision procedure for local theory extensions presented in [36], which is im-
plemented in H-Pilot [22], eagerly generates all instances of extension axioms upfront,
before the base theory solver is called. As we show in our experiments, eager instanti-
ation is prohibitively expensive for many local theory extensions that are of interest in
verification because it results in a high degree polynomial blowup in the problem size.

In [24], Swen Jacobs proposed an incremental instantiation algorithm for local
theory extensions. The algorithm is a variant of model-based quantifier instantiation
(MBQI). It uses the base theory solver to incrementally generate partial models from
which relevant axiom instances are extracted. The algorithm was implemented as a
plug-in to Z3 and experiments showed that it helps to reduce the overall number of
axiom instances that need to be considered. However, the benchmarks were artificially
generated. Jacob’s algorithm is orthogonal to ours as the focus of this paper is on how
to use SMT solvers for deciding local theory extensions without adding new substantial
functionality to the solvers. A combination with this approach is feasible as we discuss
in more detail below.

Other variants of MBQI include its use in the context of finite model finding [33],
and the algorithm described in [17], which is implemented in Z3. This algorithm is
complete for the so-called almost uninterpreted fragment of first-order logic. While this
fragment is not sufficiently expressive for the local theory extensions that appear in our
benchmarks, it includes important fragments such as Effectively Propositional Logic
(EPR). In fact, we have also experimented with a hybrid approach that uses our E-
matching-based algorithm to reduce the benchmarks first to EPR and then solves them
with Z3’s MBQI algorithm.

E-matching was first described in [28], and since has been implemented in vari-
ous SMT solvers [10, 16]. In practice, user-provided triggers can be given as hints for
finer grained control over quantifier instantiations in these implementations. More re-
cent work [13] has made progress towards formalizing the semantics of triggers for the
purposes of specifying decision procedures for a number of theories. A more general
but incomplete technique [34] addresses the prohibitively large number of instantiations
produced by E-matching by prioritizing instantiations that lead to ground conflicts.

2 Example

We start our discussion with a simple example that illustrates the basic idea behind local
theory extensions. Consider the following set of ground literals

G = {a+ b = 1, f(a) + f(b) = 0}.
K[G] = {Kσ1, Kσ2, Kσ3, Kσ4}
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a=0, f(a)=-1

b=1, f(b)=-1
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of the extension symbol f in this model to the ground terms in G[ {K}, we obtain the
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a = 0, b = 1, f(x) = {�1 if x = 0, 1 if x = 1, undefined otherwise}. (4)

This partial model can now be embedded into the model (1) of the theory extension.
If such embeddings of partial models of G0 to total models of G [ {K} always exist
for all sets of ground literals G, then K is a local theory extension of T0. The second
characterization of local theory extensions is proof-theoretic and states that a set of
axioms is a local theory extension if it is saturated under (ordered) resolution [4]. This
characterization can be used to automatically compute local theory extensions from
non-local ones [20].

Note that the locality property depends both on the base theory as well as the specific
axiomatization of the theory extension. For example, the following axiomatization of a
monotone function f over the integers, which is logically equivalent to equation (2) in
T0, is not local:

K = 8x. f(x)  f(x+ 1) .

Similarly, if we replace all inequalities in equation (2) by strict inequalities, then the
extension is no longer local for the base theory T0. However, if we replace T0 by a
theory in which  is a dense order (such as in linear real arithmetic), then the strict
version of the monotonicity axiom is again a local theory extension.

In the next two sections, we show how we can use the existing technology im-
plemented in quantifier modules of SMT solvers to decide local theory extensions. In
particular, we show how E-matching can be used to further reduce the number of axiom
instances that need to be considered before we can conclude that a given set of ground
literals G is satisfiable.

3 Preliminaries
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and ⇧ are countable sets of function and predicate symbols, respectively. Each function
symbol f 2 ⌦ has an associated arity n � 0 and associated sort s1 ⇥ · · · ⇥ sn ! s0

with si 2 Sorts for all i  n. Function symbols of arity 0 are called constant symbols.
Similarly, predicate symbols P 2 ⇧ have an arity n � 0 and sort s1 ⇥ · · · ⇥ sn.
We assume dedicated equality symbols ⇡s 2 ⇧ with the sort s ⇥ s for all sorts s 2
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can help them further improve the completeness and performance of today’s quantifier
instantiation modules.

Related work. Sofronie-Stokkermans [36] introduced local theory extensions as a gen-
eralization of locality in equational theories [15, 18]. Further generalizations include
Psi-local theories [21], which can describe arbitrary theory extensions that admit finite
quantifier instantiation. The formalization of our algorithm targets local theory exten-
sions, but we briefly describe how it can be generalized to handle Psi-locality. The
original decision procedure for local theory extensions presented in [36], which is im-
plemented in H-Pilot [22], eagerly generates all instances of extension axioms upfront,
before the base theory solver is called. As we show in our experiments, eager instanti-
ation is prohibitively expensive for many local theory extensions that are of interest in
verification because it results in a high degree polynomial blowup in the problem size.

In [24], Swen Jacobs proposed an incremental instantiation algorithm for local
theory extensions. The algorithm is a variant of model-based quantifier instantiation
(MBQI). It uses the base theory solver to incrementally generate partial models from
which relevant axiom instances are extracted. The algorithm was implemented as a
plug-in to Z3 and experiments showed that it helps to reduce the overall number of
axiom instances that need to be considered. However, the benchmarks were artificially
generated. Jacob’s algorithm is orthogonal to ours as the focus of this paper is on how
to use SMT solvers for deciding local theory extensions without adding new substantial
functionality to the solvers. A combination with this approach is feasible as we discuss
in more detail below.

Other variants of MBQI include its use in the context of finite model finding [33],
and the algorithm described in [17], which is implemented in Z3. This algorithm is
complete for the so-called almost uninterpreted fragment of first-order logic. While this
fragment is not sufficiently expressive for the local theory extensions that appear in our
benchmarks, it includes important fragments such as Effectively Propositional Logic
(EPR). In fact, we have also experimented with a hybrid approach that uses our E-
matching-based algorithm to reduce the benchmarks first to EPR and then solves them
with Z3’s MBQI algorithm.

E-matching was first described in [28], and since has been implemented in vari-
ous SMT solvers [10, 16]. In practice, user-provided triggers can be given as hints for
finer grained control over quantifier instantiations in these implementations. More re-
cent work [13] has made progress towards formalizing the semantics of triggers for the
purposes of specifying decision procedures for a number of theories. A more general
but incomplete technique [34] addresses the prohibitively large number of instantiations
produced by E-matching by prioritizing instantiations that lead to ground conflicts.

2 Example

We start our discussion with a simple example that illustrates the basic idea behind local
theory extensions. Consider the following set of ground literals

G = {a+ b = 1, f(a) + f(b) = 0}.
K[G] = {Kσ1, Kσ2, Kσ3, Kσ4}

-5 -4 -3 -2 -1 0 1 2 3 4 5

a=0, f(a)=-1

b=1, f(b)=-1Restrict
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Recognizing Local Theory Extensions. There are two useful characterizations of local
theory extensions that can help users of SMT solvers in designing axiomatization that
are local. The first one is model-theoretic [15, 36]. Consider again the set of ground
clauses G0. When checking satisfiability of G0 in the base theory, the SMT solver may
produce the following model:

a = 0, b = 1, f(x) = {�1 if x = 0, 1 if x = 1, -1 otherwise}. (3)

This is not a model of the original G [ {K}. However, if we restrict the interpretation
of the extension symbol f in this model to the ground terms in G[ {K}, we obtain the
partial model

a = 0, b = 1, f(x) = {�1 if x = 0, 1 if x = 1, undefined otherwise}. (4)

This partial model can now be embedded into the model (1) of the theory extension.
If such embeddings of partial models of G0 to total models of G [ {K} always exist
for all sets of ground literals G, then K is a local theory extension of T0. The second
characterization of local theory extensions is proof-theoretic and states that a set of
axioms is a local theory extension if it is saturated under (ordered) resolution [4]. This
characterization can be used to automatically compute local theory extensions from
non-local ones [20].

Note that the locality property depends both on the base theory as well as the specific
axiomatization of the theory extension. For example, the following axiomatization of a
monotone function f over the integers, which is logically equivalent to equation (2) in
T0, is not local:

K = 8x. f(x)  f(x+ 1) .

Similarly, if we replace all inequalities in equation (2) by strict inequalities, then the
extension is no longer local for the base theory T0. However, if we replace T0 by a
theory in which  is a dense order (such as in linear real arithmetic), then the strict
version of the monotonicity axiom is again a local theory extension.

In the next two sections, we show how we can use the existing technology im-
plemented in quantifier modules of SMT solvers to decide local theory extensions. In
particular, we show how E-matching can be used to further reduce the number of axiom
instances that need to be considered before we can conclude that a given set of ground
literals G is satisfiable.

3 Preliminaries

Sorted first-order logic. We present our problem in sorted first-order logic with equality.
A signature ⌃ is a tuple (Sorts,⌦,⇧), where Sorts is a countable set of sorts and ⌦

and ⇧ are countable sets of function and predicate symbols, respectively. Each function
symbol f 2 ⌦ has an associated arity n � 0 and associated sort s1 ⇥ · · · ⇥ sn ! s0

with si 2 Sorts for all i  n. Function symbols of arity 0 are called constant symbols.
Similarly, predicate symbols P 2 ⇧ have an arity n � 0 and sort s1 ⇥ · · · ⇥ sn.
We assume dedicated equality symbols ⇡s 2 ⇧ with the sort s ⇥ s for all sorts s 2
Sorts, though we typically drop the explicit subscript. Terms are built from the function
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can help them further improve the completeness and performance of today’s quantifier
instantiation modules.

Related work. Sofronie-Stokkermans [36] introduced local theory extensions as a gen-
eralization of locality in equational theories [15, 18]. Further generalizations include
Psi-local theories [21], which can describe arbitrary theory extensions that admit finite
quantifier instantiation. The formalization of our algorithm targets local theory exten-
sions, but we briefly describe how it can be generalized to handle Psi-locality. The
original decision procedure for local theory extensions presented in [36], which is im-
plemented in H-Pilot [22], eagerly generates all instances of extension axioms upfront,
before the base theory solver is called. As we show in our experiments, eager instanti-
ation is prohibitively expensive for many local theory extensions that are of interest in
verification because it results in a high degree polynomial blowup in the problem size.

In [24], Swen Jacobs proposed an incremental instantiation algorithm for local
theory extensions. The algorithm is a variant of model-based quantifier instantiation
(MBQI). It uses the base theory solver to incrementally generate partial models from
which relevant axiom instances are extracted. The algorithm was implemented as a
plug-in to Z3 and experiments showed that it helps to reduce the overall number of
axiom instances that need to be considered. However, the benchmarks were artificially
generated. Jacob’s algorithm is orthogonal to ours as the focus of this paper is on how
to use SMT solvers for deciding local theory extensions without adding new substantial
functionality to the solvers. A combination with this approach is feasible as we discuss
in more detail below.

Other variants of MBQI include its use in the context of finite model finding [33],
and the algorithm described in [17], which is implemented in Z3. This algorithm is
complete for the so-called almost uninterpreted fragment of first-order logic. While this
fragment is not sufficiently expressive for the local theory extensions that appear in our
benchmarks, it includes important fragments such as Effectively Propositional Logic
(EPR). In fact, we have also experimented with a hybrid approach that uses our E-
matching-based algorithm to reduce the benchmarks first to EPR and then solves them
with Z3’s MBQI algorithm.

E-matching was first described in [28], and since has been implemented in vari-
ous SMT solvers [10, 16]. In practice, user-provided triggers can be given as hints for
finer grained control over quantifier instantiations in these implementations. More re-
cent work [13] has made progress towards formalizing the semantics of triggers for the
purposes of specifying decision procedures for a number of theories. A more general
but incomplete technique [34] addresses the prohibitively large number of instantiations
produced by E-matching by prioritizing instantiations that lead to ground conflicts.

2 Example

We start our discussion with a simple example that illustrates the basic idea behind local
theory extensions. Consider the following set of ground literals

G = {a+ b = 1, f(a) + f(b) = 0}.
K[G] = {Kσ1, Kσ2, Kσ3, Kσ4}

-5 -4 -3 -2 -1 0 1 2 3 4 5

a=0, f(a)=-1

b=1, f(b)=-1Embed



EXAMPLES

Local theory extensions — more general than EPR

Array property fragment [Bradley, Manna, Sipma, 2006]

Theory of reachability in linked lists 
[Lahiri, Qadeer, 2006; Rakamafić, Bingham, Hu, 2007]

Theory of finite sets and multisets [Zarba, 2004; Zarba 2002]



Nelson, 1980; Detlefs, Nelson, Saxe, 2005; deMoura, Bjørner, 2007

E-MATCHING

input: 
a set of terms G
a set of ground equalities E (t1 ≈ t2).
patterns P   (e.g. f(x))  

output: 
The set of substitutions σ over the variables in p, modulo E, 
such that:

for all p ∈ P there exists a t ∈ G with E ⊧ t ≈ pσ. 
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E-MATCHING

input: 
a set of terms G
a set of ground equalities E (t1 ≈ t2).
patterns P   (e.g. f(x))  

output: 
The set of substitutions σ over the variables in p, modulo E, 
such that:

for all p ∈ P there exists a t ∈ G with E ⊧ t ≈ pσ. 

G = {a, b, c, f(a), f(b),f(c)}
E = {a ≈ b}
P = {f(x), f(y)}
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E-MATCHING

input: 
a set of terms G
a set of ground equalities E (t1 ≈ t2).
patterns P   (e.g. f(x))  

output: 
The set of substitutions σ over the variables in p, modulo E, 
such that:

for all p ∈ P there exists a t ∈ G with E ⊧ t ≈ pσ. 

G = {a, b, c, f(a), f(b),f(c)}
E = {a ≈ b}
P = {f(x), f(y)}

{x ⟶ a, y ⟶ a},
{x ⟶ a, y ⟶ c},
{x ⟶ c, y ⟶ a},
{x ⟶ c, y ⟶ c}.



EXAMPLE

φ:

  a + b ≈ 1

∧ (f(a) + f(b) ≈ 0 ∨ f(b) + f(c) ≈ 0)

∧ a + c ≈ b + d

∧ c ≈ d.
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∧ (f(a) + f(b) ≈ 0 ∨ f(b) + f(c) ≈ 0)

∧ a + c ≈ b + d

∧ c ≈ d.

4 Bansal et. al

We interpret G in the theory of linear integer arithmetic and a monotonically increasing
function f : Z ! Z. One satisfying assignment for G is:

a = 0, b = 1, f(x) = {�1 if x  0, 1 if x > 0}. (1)

We now explain how we can use an SMT solver to conclude that G is indeed satisfiable
in the above theory.

SMT solvers commonly provide inbuilt decision procedures for common theories
such as the theory of linear integer arithmetic (LIA) and the theory of equality over unin-
terpreted functions (UF). However, they do not natively support the theory of monotone
functions. The standard way to enforce f to be monotonic is to axiomatize this property,

K = 8x, y. x  y =) f(x)  f(y), (2)

and then let the SMT solver check if G[{K} is satisfiable via a reduction to its natively
supported theories. In our example, the reduction target is the combination of LIA and
UF, which we refer to as the base theory, denoted by T0. We refer to the axiom K as a
theory extension of the base theory and to the function symbol f as an extension symbol.

Most SMT solvers divide the work of deciding ground formulas G in a base theory
T0 and axioms K of theory extensions between different modules. A quantifier module
looks for substitutions to the variables within an axiom K, x and y, to some ground
terms, t1 and t2. We denote such a substitution as � = {x 7! t1, y 7! t2} and the
instance of an axiom K with respect to this substitution as K�. The quantifier module
iteratively adds the generated ground instances K� as lemmas to G until the base theory
solver derives a contradiction. However, if G is satisfiable, as in our case, then the
quantifier module does not know when to stop generating instances of K, and the solver
may diverge, effectively enumerating an infinite model of G.

For a local theory extension, we can syntactically restrict the instances K� that need
to be considered before concluding that G is satisfiable to a finite set of candidates.
More precisely, a theory extension is called local if in order to decide satisfiability of
G[ {K}, it is sufficient to consider only those instances K� in which all ground terms
already occur in G and K. The monotonicity axiom K is a local theory extension of T0.
The local instances of K and G are:

K�1 = a  b =) f(a)  f(b) where �1 = {x 7! a, y 7! b},
K�2 = b  a =) f(b)  f(a) where �2 = {x 7! b, y 7! a},
K�3 = a  a =) f(a)  f(a) where �3 = {x 7! a, y 7! a}, and
K�4 = b  b =) f(b)  f(b) where �4 = {x 7! b, y 7! b}.

Note that we do not need to instantiate x and y with other ground terms in G, such as 0
and 1. Adding the above instances to G yields

G

0 = G [ {K�1,K�2,K�3,K�4}.

which is satisfiable in the base theory. Since K is a local theory extension, we can
immediately conclude that G [ {K} is also satisfiable.
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terpreted functions (UF). However, they do not natively support the theory of monotone
functions. The standard way to enforce f to be monotonic is to axiomatize this property,
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and then let the SMT solver check if G[{K} is satisfiable via a reduction to its natively
supported theories. In our example, the reduction target is the combination of LIA and
UF, which we refer to as the base theory, denoted by T0. We refer to the axiom K as a
theory extension of the base theory and to the function symbol f as an extension symbol.
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terms, t1 and t2. We denote such a substitution as � = {x 7! t1, y 7! t2} and the
instance of an axiom K with respect to this substitution as K�. The quantifier module
iteratively adds the generated ground instances K� as lemmas to G until the base theory
solver derives a contradiction. However, if G is satisfiable, as in our case, then the
quantifier module does not know when to stop generating instances of K, and the solver
may diverge, effectively enumerating an infinite model of G.

For a local theory extension, we can syntactically restrict the instances K� that need
to be considered before concluding that G is satisfiable to a finite set of candidates.
More precisely, a theory extension is called local if in order to decide satisfiability of
G[ {K}, it is sufficient to consider only those instances K� in which all ground terms
already occur in G and K. The monotonicity axiom K is a local theory extension of T0.
The local instances of K and G are:

K�1 = a  b =) f(a)  f(b) where �1 = {x 7! a, y 7! b},
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Terms: a, b, c, d, f(a), f(b), f(c), 0, 1
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Note that we do not need to instantiate x and y with other ground terms in G, such as 0
and 1. Adding the above instances to G yields

G

0 = G [ {K�1,K�2,K�3,K�4}.

which is satisfiable in the base theory. Since K is a local theory extension, we can
immediately conclude that G [ {K} is also satisfiable.

Externally solve: Instantiate such that all 
terms already exist in G or K.

Terms: a, b, c, d, f(a), f(b), f(c), 0, 1



EXAMPLE

φ:

  a + b ≈ 1

∧ (f(a) + f(b) ≈ 0 ∨ f(b) + f(c) ≈ 0)

∧ a + c ≈ b + d

∧ c ≈ d.

4 Bansal et. al

We interpret G in the theory of linear integer arithmetic and a monotonically increasing
function f : Z ! Z. One satisfying assignment for G is:

a = 0, b = 1, f(x) = {�1 if x  0, 1 if x > 0}. (1)

We now explain how we can use an SMT solver to conclude that G is indeed satisfiable
in the above theory.

SMT solvers commonly provide inbuilt decision procedures for common theories
such as the theory of linear integer arithmetic (LIA) and the theory of equality over unin-
terpreted functions (UF). However, they do not natively support the theory of monotone
functions. The standard way to enforce f to be monotonic is to axiomatize this property,

K = 8x, y. x  y =) f(x)  f(y), (2)

and then let the SMT solver check if G[{K} is satisfiable via a reduction to its natively
supported theories. In our example, the reduction target is the combination of LIA and
UF, which we refer to as the base theory, denoted by T0. We refer to the axiom K as a
theory extension of the base theory and to the function symbol f as an extension symbol.

Most SMT solvers divide the work of deciding ground formulas G in a base theory
T0 and axioms K of theory extensions between different modules. A quantifier module
looks for substitutions to the variables within an axiom K, x and y, to some ground
terms, t1 and t2. We denote such a substitution as � = {x 7! t1, y 7! t2} and the
instance of an axiom K with respect to this substitution as K�. The quantifier module
iteratively adds the generated ground instances K� as lemmas to G until the base theory
solver derives a contradiction. However, if G is satisfiable, as in our case, then the
quantifier module does not know when to stop generating instances of K, and the solver
may diverge, effectively enumerating an infinite model of G.

For a local theory extension, we can syntactically restrict the instances K� that need
to be considered before concluding that G is satisfiable to a finite set of candidates.
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immediately conclude that G [ {K} is also satisfiable.

Externally solve: Instantiate such that all 
terms already exist in G or K.

Terms: a, b, c, d, f(a), f(b), f(c), 0, 1

{x —> a, b, c} ⨉ {y —> a, b, c}

Not d, 0, 1 as f(.) not in G or K.
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and 1. Adding the above instances to G yields

G

0 = G [ {K�1,K�2,K�3,K�4}.

which is satisfiable in the base theory. Since K is a local theory extension, we can
immediately conclude that G [ {K} is also satisfiable.

Core

SAT Solver

Base theory 
Solvers



EXAMPLE

φ:

  a + b ≈ 1

∧ (f(a) + f(b) ≈ 0 ∨ f(b) + f(c) ≈ 0)

∧ a + c ≈ b + d

∧ c ≈ d.

4 Bansal et. al

We interpret G in the theory of linear integer arithmetic and a monotonically increasing
function f : Z ! Z. One satisfying assignment for G is:

a = 0, b = 1, f(x) = {�1 if x  0, 1 if x > 0}. (1)

We now explain how we can use an SMT solver to conclude that G is indeed satisfiable
in the above theory.

SMT solvers commonly provide inbuilt decision procedures for common theories
such as the theory of linear integer arithmetic (LIA) and the theory of equality over unin-
terpreted functions (UF). However, they do not natively support the theory of monotone
functions. The standard way to enforce f to be monotonic is to axiomatize this property,

K = 8x, y. x  y =) f(x)  f(y), (2)

and then let the SMT solver check if G[{K} is satisfiable via a reduction to its natively
supported theories. In our example, the reduction target is the combination of LIA and
UF, which we refer to as the base theory, denoted by T0. We refer to the axiom K as a
theory extension of the base theory and to the function symbol f as an extension symbol.

Most SMT solvers divide the work of deciding ground formulas G in a base theory
T0 and axioms K of theory extensions between different modules. A quantifier module
looks for substitutions to the variables within an axiom K, x and y, to some ground
terms, t1 and t2. We denote such a substitution as � = {x 7! t1, y 7! t2} and the
instance of an axiom K with respect to this substitution as K�. The quantifier module
iteratively adds the generated ground instances K� as lemmas to G until the base theory
solver derives a contradiction. However, if G is satisfiable, as in our case, then the
quantifier module does not know when to stop generating instances of K, and the solver
may diverge, effectively enumerating an infinite model of G.

For a local theory extension, we can syntactically restrict the instances K� that need
to be considered before concluding that G is satisfiable to a finite set of candidates.
More precisely, a theory extension is called local if in order to decide satisfiability of
G[ {K}, it is sufficient to consider only those instances K� in which all ground terms
already occur in G and K. The monotonicity axiom K is a local theory extension of T0.
The local instances of K and G are:

K�1 = a  b =) f(a)  f(b) where �1 = {x 7! a, y 7! b},
K�2 = b  a =) f(b)  f(a) where �2 = {x 7! b, y 7! a},
K�3 = a  a =) f(a)  f(a) where �3 = {x 7! a, y 7! a}, and
K�4 = b  b =) f(b)  f(b) where �4 = {x 7! b, y 7! b}.

Note that we do not need to instantiate x and y with other ground terms in G, such as 0
and 1. Adding the above instances to G yields
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0 = G [ {K�1,K�2,K�3,K�4}.

which is satisfiable in the base theory. Since K is a local theory extension, we can
immediately conclude that G [ {K} is also satisfiable.
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We interpret G in the theory of linear integer arithmetic and a monotonically increasing
function f : Z ! Z. One satisfying assignment for G is:

a = 0, b = 1, f(x) = {�1 if x  0, 1 if x > 0}. (1)

We now explain how we can use an SMT solver to conclude that G is indeed satisfiable
in the above theory.

SMT solvers commonly provide inbuilt decision procedures for common theories
such as the theory of linear integer arithmetic (LIA) and the theory of equality over unin-
terpreted functions (UF). However, they do not natively support the theory of monotone
functions. The standard way to enforce f to be monotonic is to axiomatize this property,

K = 8x, y. x  y =) f(x)  f(y), (2)

and then let the SMT solver check if G[{K} is satisfiable via a reduction to its natively
supported theories. In our example, the reduction target is the combination of LIA and
UF, which we refer to as the base theory, denoted by T0. We refer to the axiom K as a
theory extension of the base theory and to the function symbol f as an extension symbol.

Most SMT solvers divide the work of deciding ground formulas G in a base theory
T0 and axioms K of theory extensions between different modules. A quantifier module
looks for substitutions to the variables within an axiom K, x and y, to some ground
terms, t1 and t2. We denote such a substitution as � = {x 7! t1, y 7! t2} and the
instance of an axiom K with respect to this substitution as K�. The quantifier module
iteratively adds the generated ground instances K� as lemmas to G until the base theory
solver derives a contradiction. However, if G is satisfiable, as in our case, then the
quantifier module does not know when to stop generating instances of K, and the solver
may diverge, effectively enumerating an infinite model of G.

For a local theory extension, we can syntactically restrict the instances K� that need
to be considered before concluding that G is satisfiable to a finite set of candidates.
More precisely, a theory extension is called local if in order to decide satisfiability of
G[ {K}, it is sufficient to consider only those instances K� in which all ground terms
already occur in G and K. The monotonicity axiom K is a local theory extension of T0.
The local instances of K and G are:

K�1 = a  b =) f(a)  f(b) where �1 = {x 7! a, y 7! b},
K�2 = b  a =) f(b)  f(a) where �2 = {x 7! b, y 7! a},
K�3 = a  a =) f(a)  f(a) where �3 = {x 7! a, y 7! a}, and
K�4 = b  b =) f(b)  f(b) where �4 = {x 7! b, y 7! b}.

Note that we do not need to instantiate x and y with other ground terms in G, such as 0
and 1. Adding the above instances to G yields
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0 = G [ {K�1,K�2,K�3,K�4}.

which is satisfiable in the base theory. Since K is a local theory extension, we can
immediately conclude that G [ {K} is also satisfiable.
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We interpret G in the theory of linear integer arithmetic and a monotonically increasing
function f : Z ! Z. One satisfying assignment for G is:

a = 0, b = 1, f(x) = {�1 if x  0, 1 if x > 0}. (1)

We now explain how we can use an SMT solver to conclude that G is indeed satisfiable
in the above theory.

SMT solvers commonly provide inbuilt decision procedures for common theories
such as the theory of linear integer arithmetic (LIA) and the theory of equality over unin-
terpreted functions (UF). However, they do not natively support the theory of monotone
functions. The standard way to enforce f to be monotonic is to axiomatize this property,

K = 8x, y. x  y =) f(x)  f(y), (2)

and then let the SMT solver check if G[{K} is satisfiable via a reduction to its natively
supported theories. In our example, the reduction target is the combination of LIA and
UF, which we refer to as the base theory, denoted by T0. We refer to the axiom K as a
theory extension of the base theory and to the function symbol f as an extension symbol.

Most SMT solvers divide the work of deciding ground formulas G in a base theory
T0 and axioms K of theory extensions between different modules. A quantifier module
looks for substitutions to the variables within an axiom K, x and y, to some ground
terms, t1 and t2. We denote such a substitution as � = {x 7! t1, y 7! t2} and the
instance of an axiom K with respect to this substitution as K�. The quantifier module
iteratively adds the generated ground instances K� as lemmas to G until the base theory
solver derives a contradiction. However, if G is satisfiable, as in our case, then the
quantifier module does not know when to stop generating instances of K, and the solver
may diverge, effectively enumerating an infinite model of G.

For a local theory extension, we can syntactically restrict the instances K� that need
to be considered before concluding that G is satisfiable to a finite set of candidates.
More precisely, a theory extension is called local if in order to decide satisfiability of
G[ {K}, it is sufficient to consider only those instances K� in which all ground terms
already occur in G and K. The monotonicity axiom K is a local theory extension of T0.
The local instances of K and G are:

K�1 = a  b =) f(a)  f(b) where �1 = {x 7! a, y 7! b},
K�2 = b  a =) f(b)  f(a) where �2 = {x 7! b, y 7! a},
K�3 = a  a =) f(a)  f(a) where �3 = {x 7! a, y 7! a}, and
K�4 = b  b =) f(b)  f(b) where �4 = {x 7! b, y 7! b}.

Note that we do not need to instantiate x and y with other ground terms in G, such as 0
and 1. Adding the above instances to G yields

G

0 = G [ {K�1,K�2,K�3,K�4}.

which is satisfiable in the base theory. Since K is a local theory extension, we can
immediately conclude that G [ {K} is also satisfiable.
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We interpret G in the theory of linear integer arithmetic and a monotonically increasing
function f : Z ! Z. One satisfying assignment for G is:

a = 0, b = 1, f(x) = {�1 if x  0, 1 if x > 0}. (1)

We now explain how we can use an SMT solver to conclude that G is indeed satisfiable
in the above theory.

SMT solvers commonly provide inbuilt decision procedures for common theories
such as the theory of linear integer arithmetic (LIA) and the theory of equality over unin-
terpreted functions (UF). However, they do not natively support the theory of monotone
functions. The standard way to enforce f to be monotonic is to axiomatize this property,

K = 8x, y. x  y =) f(x)  f(y), (2)

and then let the SMT solver check if G[{K} is satisfiable via a reduction to its natively
supported theories. In our example, the reduction target is the combination of LIA and
UF, which we refer to as the base theory, denoted by T0. We refer to the axiom K as a
theory extension of the base theory and to the function symbol f as an extension symbol.

Most SMT solvers divide the work of deciding ground formulas G in a base theory
T0 and axioms K of theory extensions between different modules. A quantifier module
looks for substitutions to the variables within an axiom K, x and y, to some ground
terms, t1 and t2. We denote such a substitution as � = {x 7! t1, y 7! t2} and the
instance of an axiom K with respect to this substitution as K�. The quantifier module
iteratively adds the generated ground instances K� as lemmas to G until the base theory
solver derives a contradiction. However, if G is satisfiable, as in our case, then the
quantifier module does not know when to stop generating instances of K, and the solver
may diverge, effectively enumerating an infinite model of G.

For a local theory extension, we can syntactically restrict the instances K� that need
to be considered before concluding that G is satisfiable to a finite set of candidates.
More precisely, a theory extension is called local if in order to decide satisfiability of
G[ {K}, it is sufficient to consider only those instances K� in which all ground terms
already occur in G and K. The monotonicity axiom K is a local theory extension of T0.
The local instances of K and G are:

K�1 = a  b =) f(a)  f(b) where �1 = {x 7! a, y 7! b},
K�2 = b  a =) f(b)  f(a) where �2 = {x 7! b, y 7! a},
K�3 = a  a =) f(a)  f(a) where �3 = {x 7! a, y 7! a}, and
K�4 = b  b =) f(b)  f(b) where �4 = {x 7! b, y 7! b}.

Note that we do not need to instantiate x and y with other ground terms in G, such as 0
and 1. Adding the above instances to G yields

G

0 = G [ {K�1,K�2,K�3,K�4}.

which is satisfiable in the base theory. Since K is a local theory extension, we can
immediately conclude that G [ {K} is also satisfiable.
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We interpret G in the theory of linear integer arithmetic and a monotonically increasing
function f : Z ! Z. One satisfying assignment for G is:

a = 0, b = 1, f(x) = {�1 if x  0, 1 if x > 0}. (1)

We now explain how we can use an SMT solver to conclude that G is indeed satisfiable
in the above theory.

SMT solvers commonly provide inbuilt decision procedures for common theories
such as the theory of linear integer arithmetic (LIA) and the theory of equality over unin-
terpreted functions (UF). However, they do not natively support the theory of monotone
functions. The standard way to enforce f to be monotonic is to axiomatize this property,

K = 8x, y. x  y =) f(x)  f(y), (2)

and then let the SMT solver check if G[{K} is satisfiable via a reduction to its natively
supported theories. In our example, the reduction target is the combination of LIA and
UF, which we refer to as the base theory, denoted by T0. We refer to the axiom K as a
theory extension of the base theory and to the function symbol f as an extension symbol.

Most SMT solvers divide the work of deciding ground formulas G in a base theory
T0 and axioms K of theory extensions between different modules. A quantifier module
looks for substitutions to the variables within an axiom K, x and y, to some ground
terms, t1 and t2. We denote such a substitution as � = {x 7! t1, y 7! t2} and the
instance of an axiom K with respect to this substitution as K�. The quantifier module
iteratively adds the generated ground instances K� as lemmas to G until the base theory
solver derives a contradiction. However, if G is satisfiable, as in our case, then the
quantifier module does not know when to stop generating instances of K, and the solver
may diverge, effectively enumerating an infinite model of G.

For a local theory extension, we can syntactically restrict the instances K� that need
to be considered before concluding that G is satisfiable to a finite set of candidates.
More precisely, a theory extension is called local if in order to decide satisfiability of
G[ {K}, it is sufficient to consider only those instances K� in which all ground terms
already occur in G and K. The monotonicity axiom K is a local theory extension of T0.
The local instances of K and G are:

K�1 = a  b =) f(a)  f(b) where �1 = {x 7! a, y 7! b},
K�2 = b  a =) f(b)  f(a) where �2 = {x 7! b, y 7! a},
K�3 = a  a =) f(a)  f(a) where �3 = {x 7! a, y 7! a}, and
K�4 = b  b =) f(b)  f(b) where �4 = {x 7! b, y 7! b}.

Note that we do not need to instantiate x and y with other ground terms in G, such as 0
and 1. Adding the above instances to G yields

G

0 = G [ {K�1,K�2,K�3,K�4}.

which is satisfiable in the base theory. Since K is a local theory extension, we can
immediately conclude that G [ {K} is also satisfiable.
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We interpret G in the theory of linear integer arithmetic and a monotonically increasing
function f : Z ! Z. One satisfying assignment for G is:

a = 0, b = 1, f(x) = {�1 if x  0, 1 if x > 0}. (1)

We now explain how we can use an SMT solver to conclude that G is indeed satisfiable
in the above theory.

SMT solvers commonly provide inbuilt decision procedures for common theories
such as the theory of linear integer arithmetic (LIA) and the theory of equality over unin-
terpreted functions (UF). However, they do not natively support the theory of monotone
functions. The standard way to enforce f to be monotonic is to axiomatize this property,

K = 8x, y. x  y =) f(x)  f(y), (2)

and then let the SMT solver check if G[{K} is satisfiable via a reduction to its natively
supported theories. In our example, the reduction target is the combination of LIA and
UF, which we refer to as the base theory, denoted by T0. We refer to the axiom K as a
theory extension of the base theory and to the function symbol f as an extension symbol.

Most SMT solvers divide the work of deciding ground formulas G in a base theory
T0 and axioms K of theory extensions between different modules. A quantifier module
looks for substitutions to the variables within an axiom K, x and y, to some ground
terms, t1 and t2. We denote such a substitution as � = {x 7! t1, y 7! t2} and the
instance of an axiom K with respect to this substitution as K�. The quantifier module
iteratively adds the generated ground instances K� as lemmas to G until the base theory
solver derives a contradiction. However, if G is satisfiable, as in our case, then the
quantifier module does not know when to stop generating instances of K, and the solver
may diverge, effectively enumerating an infinite model of G.

For a local theory extension, we can syntactically restrict the instances K� that need
to be considered before concluding that G is satisfiable to a finite set of candidates.
More precisely, a theory extension is called local if in order to decide satisfiability of
G[ {K}, it is sufficient to consider only those instances K� in which all ground terms
already occur in G and K. The monotonicity axiom K is a local theory extension of T0.
The local instances of K and G are:

K�1 = a  b =) f(a)  f(b) where �1 = {x 7! a, y 7! b},
K�2 = b  a =) f(b)  f(a) where �2 = {x 7! b, y 7! a},
K�3 = a  a =) f(a)  f(a) where �3 = {x 7! a, y 7! a}, and
K�4 = b  b =) f(b)  f(b) where �4 = {x 7! b, y 7! b}.

Note that we do not need to instantiate x and y with other ground terms in G, such as 0
and 1. Adding the above instances to G yields

G

0 = G [ {K�1,K�2,K�3,K�4}.

which is satisfiable in the base theory. Since K is a local theory extension, we can
immediately conclude that G [ {K} is also satisfiable.
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We interpret G in the theory of linear integer arithmetic and a monotonically increasing
function f : Z ! Z. One satisfying assignment for G is:

a = 0, b = 1, f(x) = {�1 if x  0, 1 if x > 0}. (1)

We now explain how we can use an SMT solver to conclude that G is indeed satisfiable
in the above theory.

SMT solvers commonly provide inbuilt decision procedures for common theories
such as the theory of linear integer arithmetic (LIA) and the theory of equality over unin-
terpreted functions (UF). However, they do not natively support the theory of monotone
functions. The standard way to enforce f to be monotonic is to axiomatize this property,

K = 8x, y. x  y =) f(x)  f(y), (2)

and then let the SMT solver check if G[{K} is satisfiable via a reduction to its natively
supported theories. In our example, the reduction target is the combination of LIA and
UF, which we refer to as the base theory, denoted by T0. We refer to the axiom K as a
theory extension of the base theory and to the function symbol f as an extension symbol.

Most SMT solvers divide the work of deciding ground formulas G in a base theory
T0 and axioms K of theory extensions between different modules. A quantifier module
looks for substitutions to the variables within an axiom K, x and y, to some ground
terms, t1 and t2. We denote such a substitution as � = {x 7! t1, y 7! t2} and the
instance of an axiom K with respect to this substitution as K�. The quantifier module
iteratively adds the generated ground instances K� as lemmas to G until the base theory
solver derives a contradiction. However, if G is satisfiable, as in our case, then the
quantifier module does not know when to stop generating instances of K, and the solver
may diverge, effectively enumerating an infinite model of G.

For a local theory extension, we can syntactically restrict the instances K� that need
to be considered before concluding that G is satisfiable to a finite set of candidates.
More precisely, a theory extension is called local if in order to decide satisfiability of
G[ {K}, it is sufficient to consider only those instances K� in which all ground terms
already occur in G and K. The monotonicity axiom K is a local theory extension of T0.
The local instances of K and G are:

K�1 = a  b =) f(a)  f(b) where �1 = {x 7! a, y 7! b},
K�2 = b  a =) f(b)  f(a) where �2 = {x 7! b, y 7! a},
K�3 = a  a =) f(a)  f(a) where �3 = {x 7! a, y 7! a}, and
K�4 = b  b =) f(b)  f(b) where �4 = {x 7! b, y 7! b}.

Note that we do not need to instantiate x and y with other ground terms in G, such as 0
and 1. Adding the above instances to G yields

G

0 = G [ {K�1,K�2,K�3,K�4}.

which is satisfiable in the base theory. Since K is a local theory extension, we can
immediately conclude that G [ {K} is also satisfiable.
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We interpret G in the theory of linear integer arithmetic and a monotonically increasing
function f : Z ! Z. One satisfying assignment for G is:

a = 0, b = 1, f(x) = {�1 if x  0, 1 if x > 0}. (1)

We now explain how we can use an SMT solver to conclude that G is indeed satisfiable
in the above theory.

SMT solvers commonly provide inbuilt decision procedures for common theories
such as the theory of linear integer arithmetic (LIA) and the theory of equality over unin-
terpreted functions (UF). However, they do not natively support the theory of monotone
functions. The standard way to enforce f to be monotonic is to axiomatize this property,

K = 8x, y. x  y =) f(x)  f(y), (2)

and then let the SMT solver check if G[{K} is satisfiable via a reduction to its natively
supported theories. In our example, the reduction target is the combination of LIA and
UF, which we refer to as the base theory, denoted by T0. We refer to the axiom K as a
theory extension of the base theory and to the function symbol f as an extension symbol.

Most SMT solvers divide the work of deciding ground formulas G in a base theory
T0 and axioms K of theory extensions between different modules. A quantifier module
looks for substitutions to the variables within an axiom K, x and y, to some ground
terms, t1 and t2. We denote such a substitution as � = {x 7! t1, y 7! t2} and the
instance of an axiom K with respect to this substitution as K�. The quantifier module
iteratively adds the generated ground instances K� as lemmas to G until the base theory
solver derives a contradiction. However, if G is satisfiable, as in our case, then the
quantifier module does not know when to stop generating instances of K, and the solver
may diverge, effectively enumerating an infinite model of G.

For a local theory extension, we can syntactically restrict the instances K� that need
to be considered before concluding that G is satisfiable to a finite set of candidates.
More precisely, a theory extension is called local if in order to decide satisfiability of
G[ {K}, it is sufficient to consider only those instances K� in which all ground terms
already occur in G and K. The monotonicity axiom K is a local theory extension of T0.
The local instances of K and G are:

K�1 = a  b =) f(a)  f(b) where �1 = {x 7! a, y 7! b},
K�2 = b  a =) f(b)  f(a) where �2 = {x 7! b, y 7! a},
K�3 = a  a =) f(a)  f(a) where �3 = {x 7! a, y 7! a}, and
K�4 = b  b =) f(b)  f(b) where �4 = {x 7! b, y 7! b}.

Note that we do not need to instantiate x and y with other ground terms in G, such as 0
and 1. Adding the above instances to G yields
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0 = G [ {K�1,K�2,K�3,K�4}.

which is satisfiable in the base theory. Since K is a local theory extension, we can
immediately conclude that G [ {K} is also satisfiable.
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We interpret G in the theory of linear integer arithmetic and a monotonically increasing
function f : Z ! Z. One satisfying assignment for G is:

a = 0, b = 1, f(x) = {�1 if x  0, 1 if x > 0}. (1)

We now explain how we can use an SMT solver to conclude that G is indeed satisfiable
in the above theory.

SMT solvers commonly provide inbuilt decision procedures for common theories
such as the theory of linear integer arithmetic (LIA) and the theory of equality over unin-
terpreted functions (UF). However, they do not natively support the theory of monotone
functions. The standard way to enforce f to be monotonic is to axiomatize this property,

K = 8x, y. x  y =) f(x)  f(y), (2)

and then let the SMT solver check if G[{K} is satisfiable via a reduction to its natively
supported theories. In our example, the reduction target is the combination of LIA and
UF, which we refer to as the base theory, denoted by T0. We refer to the axiom K as a
theory extension of the base theory and to the function symbol f as an extension symbol.

Most SMT solvers divide the work of deciding ground formulas G in a base theory
T0 and axioms K of theory extensions between different modules. A quantifier module
looks for substitutions to the variables within an axiom K, x and y, to some ground
terms, t1 and t2. We denote such a substitution as � = {x 7! t1, y 7! t2} and the
instance of an axiom K with respect to this substitution as K�. The quantifier module
iteratively adds the generated ground instances K� as lemmas to G until the base theory
solver derives a contradiction. However, if G is satisfiable, as in our case, then the
quantifier module does not know when to stop generating instances of K, and the solver
may diverge, effectively enumerating an infinite model of G.

For a local theory extension, we can syntactically restrict the instances K� that need
to be considered before concluding that G is satisfiable to a finite set of candidates.
More precisely, a theory extension is called local if in order to decide satisfiability of
G[ {K}, it is sufficient to consider only those instances K� in which all ground terms
already occur in G and K. The monotonicity axiom K is a local theory extension of T0.
The local instances of K and G are:

K�1 = a  b =) f(a)  f(b) where �1 = {x 7! a, y 7! b},
K�2 = b  a =) f(b)  f(a) where �2 = {x 7! b, y 7! a},
K�3 = a  a =) f(a)  f(a) where �3 = {x 7! a, y 7! a}, and
K�4 = b  b =) f(b)  f(b) where �4 = {x 7! b, y 7! b}.

Note that we do not need to instantiate x and y with other ground terms in G, such as 0
and 1. Adding the above instances to G yields

G

0 = G [ {K�1,K�2,K�3,K�4}.

which is satisfiable in the base theory. Since K is a local theory extension, we can
immediately conclude that G [ {K} is also satisfiable.
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We interpret G in the theory of linear integer arithmetic and a monotonically increasing
function f : Z ! Z. One satisfying assignment for G is:

a = 0, b = 1, f(x) = {�1 if x  0, 1 if x > 0}. (1)

We now explain how we can use an SMT solver to conclude that G is indeed satisfiable
in the above theory.

SMT solvers commonly provide inbuilt decision procedures for common theories
such as the theory of linear integer arithmetic (LIA) and the theory of equality over unin-
terpreted functions (UF). However, they do not natively support the theory of monotone
functions. The standard way to enforce f to be monotonic is to axiomatize this property,

K = 8x, y. x  y =) f(x)  f(y), (2)

and then let the SMT solver check if G[{K} is satisfiable via a reduction to its natively
supported theories. In our example, the reduction target is the combination of LIA and
UF, which we refer to as the base theory, denoted by T0. We refer to the axiom K as a
theory extension of the base theory and to the function symbol f as an extension symbol.

Most SMT solvers divide the work of deciding ground formulas G in a base theory
T0 and axioms K of theory extensions between different modules. A quantifier module
looks for substitutions to the variables within an axiom K, x and y, to some ground
terms, t1 and t2. We denote such a substitution as � = {x 7! t1, y 7! t2} and the
instance of an axiom K with respect to this substitution as K�. The quantifier module
iteratively adds the generated ground instances K� as lemmas to G until the base theory
solver derives a contradiction. However, if G is satisfiable, as in our case, then the
quantifier module does not know when to stop generating instances of K, and the solver
may diverge, effectively enumerating an infinite model of G.

For a local theory extension, we can syntactically restrict the instances K� that need
to be considered before concluding that G is satisfiable to a finite set of candidates.
More precisely, a theory extension is called local if in order to decide satisfiability of
G[ {K}, it is sufficient to consider only those instances K� in which all ground terms
already occur in G and K. The monotonicity axiom K is a local theory extension of T0.
The local instances of K and G are:

K�1 = a  b =) f(a)  f(b) where �1 = {x 7! a, y 7! b},
K�2 = b  a =) f(b)  f(a) where �2 = {x 7! b, y 7! a},
K�3 = a  a =) f(a)  f(a) where �3 = {x 7! a, y 7! a}, and
K�4 = b  b =) f(b)  f(b) where �4 = {x 7! b, y 7! b}.

Note that we do not need to instantiate x and y with other ground terms in G, such as 0
and 1. Adding the above instances to G yields

G

0 = G [ {K�1,K�2,K�3,K�4}.

which is satisfiable in the base theory. Since K is a local theory extension, we can
immediately conclude that G [ {K} is also satisfiable.
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We interpret G in the theory of linear integer arithmetic and a monotonically increasing
function f : Z ! Z. One satisfying assignment for G is:

a = 0, b = 1, f(x) = {�1 if x  0, 1 if x > 0}. (1)

We now explain how we can use an SMT solver to conclude that G is indeed satisfiable
in the above theory.

SMT solvers commonly provide inbuilt decision procedures for common theories
such as the theory of linear integer arithmetic (LIA) and the theory of equality over unin-
terpreted functions (UF). However, they do not natively support the theory of monotone
functions. The standard way to enforce f to be monotonic is to axiomatize this property,

K = 8x, y. x  y =) f(x)  f(y), (2)

and then let the SMT solver check if G[{K} is satisfiable via a reduction to its natively
supported theories. In our example, the reduction target is the combination of LIA and
UF, which we refer to as the base theory, denoted by T0. We refer to the axiom K as a
theory extension of the base theory and to the function symbol f as an extension symbol.

Most SMT solvers divide the work of deciding ground formulas G in a base theory
T0 and axioms K of theory extensions between different modules. A quantifier module
looks for substitutions to the variables within an axiom K, x and y, to some ground
terms, t1 and t2. We denote such a substitution as � = {x 7! t1, y 7! t2} and the
instance of an axiom K with respect to this substitution as K�. The quantifier module
iteratively adds the generated ground instances K� as lemmas to G until the base theory
solver derives a contradiction. However, if G is satisfiable, as in our case, then the
quantifier module does not know when to stop generating instances of K, and the solver
may diverge, effectively enumerating an infinite model of G.

For a local theory extension, we can syntactically restrict the instances K� that need
to be considered before concluding that G is satisfiable to a finite set of candidates.
More precisely, a theory extension is called local if in order to decide satisfiability of
G[ {K}, it is sufficient to consider only those instances K� in which all ground terms
already occur in G and K. The monotonicity axiom K is a local theory extension of T0.
The local instances of K and G are:

K�1 = a  b =) f(a)  f(b) where �1 = {x 7! a, y 7! b},
K�2 = b  a =) f(b)  f(a) where �2 = {x 7! b, y 7! a},
K�3 = a  a =) f(a)  f(a) where �3 = {x 7! a, y 7! a}, and
K�4 = b  b =) f(b)  f(b) where �4 = {x 7! b, y 7! b}.

Note that we do not need to instantiate x and y with other ground terms in G, such as 0
and 1. Adding the above instances to G yields

G

0 = G [ {K�1,K�2,K�3,K�4}.

which is satisfiable in the base theory. Since K is a local theory extension, we can
immediately conclude that G [ {K} is also satisfiable.
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We interpret G in the theory of linear integer arithmetic and a monotonically increasing
function f : Z ! Z. One satisfying assignment for G is:

a = 0, b = 1, f(x) = {�1 if x  0, 1 if x > 0}. (1)

We now explain how we can use an SMT solver to conclude that G is indeed satisfiable
in the above theory.

SMT solvers commonly provide inbuilt decision procedures for common theories
such as the theory of linear integer arithmetic (LIA) and the theory of equality over unin-
terpreted functions (UF). However, they do not natively support the theory of monotone
functions. The standard way to enforce f to be monotonic is to axiomatize this property,

K = 8x, y. x  y =) f(x)  f(y), (2)

and then let the SMT solver check if G[{K} is satisfiable via a reduction to its natively
supported theories. In our example, the reduction target is the combination of LIA and
UF, which we refer to as the base theory, denoted by T0. We refer to the axiom K as a
theory extension of the base theory and to the function symbol f as an extension symbol.

Most SMT solvers divide the work of deciding ground formulas G in a base theory
T0 and axioms K of theory extensions between different modules. A quantifier module
looks for substitutions to the variables within an axiom K, x and y, to some ground
terms, t1 and t2. We denote such a substitution as � = {x 7! t1, y 7! t2} and the
instance of an axiom K with respect to this substitution as K�. The quantifier module
iteratively adds the generated ground instances K� as lemmas to G until the base theory
solver derives a contradiction. However, if G is satisfiable, as in our case, then the
quantifier module does not know when to stop generating instances of K, and the solver
may diverge, effectively enumerating an infinite model of G.

For a local theory extension, we can syntactically restrict the instances K� that need
to be considered before concluding that G is satisfiable to a finite set of candidates.
More precisely, a theory extension is called local if in order to decide satisfiability of
G[ {K}, it is sufficient to consider only those instances K� in which all ground terms
already occur in G and K. The monotonicity axiom K is a local theory extension of T0.
The local instances of K and G are:

K�1 = a  b =) f(a)  f(b) where �1 = {x 7! a, y 7! b},
K�2 = b  a =) f(b)  f(a) where �2 = {x 7! b, y 7! a},
K�3 = a  a =) f(a)  f(a) where �3 = {x 7! a, y 7! a}, and
K�4 = b  b =) f(b)  f(b) where �4 = {x 7! b, y 7! b}.

Note that we do not need to instantiate x and y with other ground terms in G, such as 0
and 1. Adding the above instances to G yields

G

0 = G [ {K�1,K�2,K�3,K�4}.

which is satisfiable in the base theory. Since K is a local theory extension, we can
immediately conclude that G [ {K} is also satisfiable.
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We interpret G in the theory of linear integer arithmetic and a monotonically increasing
function f : Z ! Z. One satisfying assignment for G is:

a = 0, b = 1, f(x) = {�1 if x  0, 1 if x > 0}. (1)

We now explain how we can use an SMT solver to conclude that G is indeed satisfiable
in the above theory.

SMT solvers commonly provide inbuilt decision procedures for common theories
such as the theory of linear integer arithmetic (LIA) and the theory of equality over unin-
terpreted functions (UF). However, they do not natively support the theory of monotone
functions. The standard way to enforce f to be monotonic is to axiomatize this property,

K = 8x, y. x  y =) f(x)  f(y), (2)

and then let the SMT solver check if G[{K} is satisfiable via a reduction to its natively
supported theories. In our example, the reduction target is the combination of LIA and
UF, which we refer to as the base theory, denoted by T0. We refer to the axiom K as a
theory extension of the base theory and to the function symbol f as an extension symbol.

Most SMT solvers divide the work of deciding ground formulas G in a base theory
T0 and axioms K of theory extensions between different modules. A quantifier module
looks for substitutions to the variables within an axiom K, x and y, to some ground
terms, t1 and t2. We denote such a substitution as � = {x 7! t1, y 7! t2} and the
instance of an axiom K with respect to this substitution as K�. The quantifier module
iteratively adds the generated ground instances K� as lemmas to G until the base theory
solver derives a contradiction. However, if G is satisfiable, as in our case, then the
quantifier module does not know when to stop generating instances of K, and the solver
may diverge, effectively enumerating an infinite model of G.

For a local theory extension, we can syntactically restrict the instances K� that need
to be considered before concluding that G is satisfiable to a finite set of candidates.
More precisely, a theory extension is called local if in order to decide satisfiability of
G[ {K}, it is sufficient to consider only those instances K� in which all ground terms
already occur in G and K. The monotonicity axiom K is a local theory extension of T0.
The local instances of K and G are:

K�1 = a  b =) f(a)  f(b) where �1 = {x 7! a, y 7! b},
K�2 = b  a =) f(b)  f(a) where �2 = {x 7! b, y 7! a},
K�3 = a  a =) f(a)  f(a) where �3 = {x 7! a, y 7! a}, and
K�4 = b  b =) f(b)  f(b) where �4 = {x 7! b, y 7! b}.

Note that we do not need to instantiate x and y with other ground terms in G, such as 0
and 1. Adding the above instances to G yields

G

0 = G [ {K�1,K�2,K�3,K�4}.

which is satisfiable in the base theory. Since K is a local theory extension, we can
immediately conclude that G [ {K} is also satisfiable.

G={a, b, c, d, a+c, b+d,  
   0, 1, f(a), f(b)}
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We interpret G in the theory of linear integer arithmetic and a monotonically increasing
function f : Z ! Z. One satisfying assignment for G is:

a = 0, b = 1, f(x) = {�1 if x  0, 1 if x > 0}. (1)

We now explain how we can use an SMT solver to conclude that G is indeed satisfiable
in the above theory.

SMT solvers commonly provide inbuilt decision procedures for common theories
such as the theory of linear integer arithmetic (LIA) and the theory of equality over unin-
terpreted functions (UF). However, they do not natively support the theory of monotone
functions. The standard way to enforce f to be monotonic is to axiomatize this property,

K = 8x, y. x  y =) f(x)  f(y), (2)

and then let the SMT solver check if G[{K} is satisfiable via a reduction to its natively
supported theories. In our example, the reduction target is the combination of LIA and
UF, which we refer to as the base theory, denoted by T0. We refer to the axiom K as a
theory extension of the base theory and to the function symbol f as an extension symbol.

Most SMT solvers divide the work of deciding ground formulas G in a base theory
T0 and axioms K of theory extensions between different modules. A quantifier module
looks for substitutions to the variables within an axiom K, x and y, to some ground
terms, t1 and t2. We denote such a substitution as � = {x 7! t1, y 7! t2} and the
instance of an axiom K with respect to this substitution as K�. The quantifier module
iteratively adds the generated ground instances K� as lemmas to G until the base theory
solver derives a contradiction. However, if G is satisfiable, as in our case, then the
quantifier module does not know when to stop generating instances of K, and the solver
may diverge, effectively enumerating an infinite model of G.

For a local theory extension, we can syntactically restrict the instances K� that need
to be considered before concluding that G is satisfiable to a finite set of candidates.
More precisely, a theory extension is called local if in order to decide satisfiability of
G[ {K}, it is sufficient to consider only those instances K� in which all ground terms
already occur in G and K. The monotonicity axiom K is a local theory extension of T0.
The local instances of K and G are:

K�1 = a  b =) f(a)  f(b) where �1 = {x 7! a, y 7! b},
K�2 = b  a =) f(b)  f(a) where �2 = {x 7! b, y 7! a},
K�3 = a  a =) f(a)  f(a) where �3 = {x 7! a, y 7! a}, and
K�4 = b  b =) f(b)  f(b) where �4 = {x 7! b, y 7! b}.

Note that we do not need to instantiate x and y with other ground terms in G, such as 0
and 1. Adding the above instances to G yields

G

0 = G [ {K�1,K�2,K�3,K�4}.

which is satisfiable in the base theory. Since K is a local theory extension, we can
immediately conclude that G [ {K} is also satisfiable.

G={a, b, c, d, a+c, b+d,  
   0, 1, f(a), f(b)}
E={a+c≈b+d, c≈d, a≈b} E-matching
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We interpret G in the theory of linear integer arithmetic and a monotonically increasing
function f : Z ! Z. One satisfying assignment for G is:

a = 0, b = 1, f(x) = {�1 if x  0, 1 if x > 0}. (1)

We now explain how we can use an SMT solver to conclude that G is indeed satisfiable
in the above theory.

SMT solvers commonly provide inbuilt decision procedures for common theories
such as the theory of linear integer arithmetic (LIA) and the theory of equality over unin-
terpreted functions (UF). However, they do not natively support the theory of monotone
functions. The standard way to enforce f to be monotonic is to axiomatize this property,

K = 8x, y. x  y =) f(x)  f(y), (2)

and then let the SMT solver check if G[{K} is satisfiable via a reduction to its natively
supported theories. In our example, the reduction target is the combination of LIA and
UF, which we refer to as the base theory, denoted by T0. We refer to the axiom K as a
theory extension of the base theory and to the function symbol f as an extension symbol.

Most SMT solvers divide the work of deciding ground formulas G in a base theory
T0 and axioms K of theory extensions between different modules. A quantifier module
looks for substitutions to the variables within an axiom K, x and y, to some ground
terms, t1 and t2. We denote such a substitution as � = {x 7! t1, y 7! t2} and the
instance of an axiom K with respect to this substitution as K�. The quantifier module
iteratively adds the generated ground instances K� as lemmas to G until the base theory
solver derives a contradiction. However, if G is satisfiable, as in our case, then the
quantifier module does not know when to stop generating instances of K, and the solver
may diverge, effectively enumerating an infinite model of G.

For a local theory extension, we can syntactically restrict the instances K� that need
to be considered before concluding that G is satisfiable to a finite set of candidates.
More precisely, a theory extension is called local if in order to decide satisfiability of
G[ {K}, it is sufficient to consider only those instances K� in which all ground terms
already occur in G and K. The monotonicity axiom K is a local theory extension of T0.
The local instances of K and G are:

K�1 = a  b =) f(a)  f(b) where �1 = {x 7! a, y 7! b},
K�2 = b  a =) f(b)  f(a) where �2 = {x 7! b, y 7! a},
K�3 = a  a =) f(a)  f(a) where �3 = {x 7! a, y 7! a}, and
K�4 = b  b =) f(b)  f(b) where �4 = {x 7! b, y 7! b}.

Note that we do not need to instantiate x and y with other ground terms in G, such as 0
and 1. Adding the above instances to G yields

G

0 = G [ {K�1,K�2,K�3,K�4}.

which is satisfiable in the base theory. Since K is a local theory extension, we can
immediately conclude that G [ {K} is also satisfiable.

G={a, b, c, d, a+c, b+d,  
   0, 1, f(a), f(b)}
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We interpret G in the theory of linear integer arithmetic and a monotonically increasing
function f : Z ! Z. One satisfying assignment for G is:

a = 0, b = 1, f(x) = {�1 if x  0, 1 if x > 0}. (1)

We now explain how we can use an SMT solver to conclude that G is indeed satisfiable
in the above theory.

SMT solvers commonly provide inbuilt decision procedures for common theories
such as the theory of linear integer arithmetic (LIA) and the theory of equality over unin-
terpreted functions (UF). However, they do not natively support the theory of monotone
functions. The standard way to enforce f to be monotonic is to axiomatize this property,

K = 8x, y. x  y =) f(x)  f(y), (2)

and then let the SMT solver check if G[{K} is satisfiable via a reduction to its natively
supported theories. In our example, the reduction target is the combination of LIA and
UF, which we refer to as the base theory, denoted by T0. We refer to the axiom K as a
theory extension of the base theory and to the function symbol f as an extension symbol.

Most SMT solvers divide the work of deciding ground formulas G in a base theory
T0 and axioms K of theory extensions between different modules. A quantifier module
looks for substitutions to the variables within an axiom K, x and y, to some ground
terms, t1 and t2. We denote such a substitution as � = {x 7! t1, y 7! t2} and the
instance of an axiom K with respect to this substitution as K�. The quantifier module
iteratively adds the generated ground instances K� as lemmas to G until the base theory
solver derives a contradiction. However, if G is satisfiable, as in our case, then the
quantifier module does not know when to stop generating instances of K, and the solver
may diverge, effectively enumerating an infinite model of G.

For a local theory extension, we can syntactically restrict the instances K� that need
to be considered before concluding that G is satisfiable to a finite set of candidates.
More precisely, a theory extension is called local if in order to decide satisfiability of
G[ {K}, it is sufficient to consider only those instances K� in which all ground terms
already occur in G and K. The monotonicity axiom K is a local theory extension of T0.
The local instances of K and G are:

K�1 = a  b =) f(a)  f(b) where �1 = {x 7! a, y 7! b},
K�2 = b  a =) f(b)  f(a) where �2 = {x 7! b, y 7! a},
K�3 = a  a =) f(a)  f(a) where �3 = {x 7! a, y 7! a}, and
K�4 = b  b =) f(b)  f(b) where �4 = {x 7! b, y 7! b}.

Note that we do not need to instantiate x and y with other ground terms in G, such as 0
and 1. Adding the above instances to G yields

G

0 = G [ {K�1,K�2,K�3,K�4}.

which is satisfiable in the base theory. Since K is a local theory extension, we can
immediately conclude that G [ {K} is also satisfiable.

G={a, b, c, d, a+c, b+d,  
   0, 1, f(a), f(b)}
E={a+c≈b+d, c≈d, a≈b}
P={f(x), f(y)}

E-matching
{x ⟶ a,
y ⟶ a}

1

Extension 
Theory Solver



ALGORITHM

Input: φ, Ke, Z, G, E  
Local variable: Z′={}

1.For each K in K:

1.Define patterns P to be the function symbols in K containing 
variables. 

2.Run E-matching algorithm with input (E,G,P). Obtain substitutions S.

3.For each σ∈S, if there exists no Kσ′ in Z such that σ ∼E σ′, then add 

Kσ to Z′. 
2. If Z′ is empty, return sat, else return Z′.



ALGORITHM

Handled by incremental E-matching 

procedures, which are well-studied, 

already implemented in SMT Solvers

Input: φ, Ke, Z, G, E  
Local variable: Z′={}

1.For each K in K:

1.Define patterns P to be the function symbols in K containing 
variables. 

2.Run E-matching algorithm with input (E,G,P). Obtain substitutions S.

3.For each σ∈S, if there exists no Kσ′ in Z such that σ ∼E σ′, then add 

Kσ to Z′. 
2. If Z′ is empty, return sat, else return Z′.



ALGORITHM

Minimal work while using existing solvers to get complete 
decision procedure.

Solver improvements if told axioms encode local theory 
extension

Complete, stop search early when SAT
Further optimizations (see Section 6 in paper)

Can be extended to Psi-local extensions (see Section 5 in paper)



EXPERIMENTS

Benchmarks: generated by Grasshopper 
[Piskac, Wies, Zufferey, 2013; 2014]

UFLIA  
| 

Graph Reachability and Stratified Sets 
| 

Frame axioms 
| 

Program specific extensions

SMT Solvers: CVC4 & Z3

Deciding Local Theory Extensions
via E-matching

Kshitij Bansal1, Andrew Reynolds2, Tim King3,
Clark Barrett1, and Thomas Wies1(B)

1 NYU, New York, USA
wies@cs.nyu.edu

2 EPFL, Lausanne, Switzerland
3 Verimag, Gieres, France

Abstract. Satisfiability Modulo Theories (SMT) solvers incorporate
decision procedures for theories of data types that commonly occur in
software. This makes them important tools for automating verification
problems. A limitation frequently encountered is that verification prob-
lems are often not fully expressible in the theories supported natively by
the solvers. Many solvers allow the specification of application-specific
theories as quantified axioms, but their handling is incomplete outside
of narrow special cases.

In this work, we show how SMT solvers can be used to obtain com-
plete decision procedures for local theory extensions, an important class
of theories that are decidable using finite instantiation of axioms. We
present an algorithm that uses E-matching to generate instances incre-
mentally during the search, significantly reducing the number of gener-
ated instances compared to eager instantiation strategies. We have used
two SMT solvers to implement this algorithm and conducted an extensive
experimental evaluation on benchmarks derived from verification condi-
tions for heap-manipulating programs. We believe that our results are of
interest to both the users of SMT solvers as well as their developers.

1 Introduction

Satisfiability Modulo Theories (SMT) solvers are a cornerstone of today’s veri-
fication technology. Common applications of SMT include checking verification
conditions in deductive verification [14,26], computing program abstractions in
software model checking [1,9,27], and synthesizing code fragments in software
synthesis [5,6]. Ultimately, all these tasks can be reduced to satisfiability of
formulas in certain first-order theories that model the semantics of prevalent
data types and software constructs, such as integers, bitvectors, and arrays. The
appeal of SMT solvers is that they implement decision procedures for efficiently
reasoning about formulas in these theories. Thus, they can often be used off the
shelf as automated back-end solvers in verification tools.
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EXPERIMENT 2 Deciding Local Theory Extensions via E-matching 13

C UD C UL C ULO Z3 UD Z3 UL Z3 ULO
family # # time # time # time # time # time # time
sl lists 139 127 70 139 383 139 17 138 1955 138 1950 139 68
dl lists 70 66 1717 70 843 70 33 56 11375 56 11358 70 2555
sl nested 63 63 1060 63 307 63 13 52 6999 52 6982 59 1992
sls lists 208 181 6046 204 11230 208 3401 182 20596 182 20354 207 4486
trees 243 229 2121 228 22042 239 7187 183 41208 183 40619 236 27095
soundness 79 76 17 79 1533 79 70 76 7996 76 8000 79 336
sat 14 - - 14 670 14 12 - - 10 3964 14 898
total 816 742 11032 797 37009 812 10732 687 90130 697 93228 804 37430

Table 1. Comparison of solvers on uninstantiated benchmarks (time in sec.)

tions. We instrumented GRASShopper to eagerly instantiate all axioms. Subfigure (a)
compares upfront instantiations with a baseline implementation of our E-matching al-
gorithm. Points along the x-axis required no instantiations in CVC4 to conclude unsat.
We have plotted the above charts up to 10e10 instantiations. There were four outlying
benchmarks where upfront instantiations had between 10e10 and up to 10e14 instances.
E-matching had zero instantiations for all four. Subfigure (b) compares against an opti-
mized version of our algorithm implemented in CVC4. It shows that incremental solving
reduces the number of instantiations significantly, often by several orders of magnitude.
The details of these optimizations are given later in the section.

Experiment 2. Next, we did a more thorough comparison on running times and num-
ber of benchmarks solved for uninstantiated benchmarks. These results are in Table 1.
The benchmarks are partitioned according to the types of data structures occurring in the
programs from which the benchmarks have been generated. Here, “sl” stands for singly-
linked, “dl” for double-linked, and “sls” for sorted singly-linked. The binary search
tree, skew heap, and union find benchmarks have all been summarized in the “trees”
row. The row “soundness” contains unsatisfiable benchmarks that come from programs
with incorrect code or specifications. These programs manipulate various types of data
structures. The actual satisfiable queries that reveal the bugs in these programs are sum-
marized in the “sat” row.

We simulated our algorithm and ran these experiments on both CVC4 (C) and Z3
obtaining similar improvements with both. We ran each with three configurations:

UD Default. For comparison purposes, we ran the solvers with default options. CVC4’s
default solver uses an E-matching based heuristic instantiation procedure, whereas
Z3’s uses both E-matching and model-based quantifier instantiation (MBQI). For
both of the solvers, the default procedures are incomplete for our benchmarks.

UL These columns refer to the E-matching based complete procedure for local theory
extensions (algorithm in Fig. 1).8

ULO Doing instantiations inside the solver instead of upfront, opens the room for opti-
mizations wherein one tries some instantiations before others, or reduces the num-

8 The configuration C UL had one memory out on a benchmark in the tree family.
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C PL C PLO Z3 PM Z3 PL Z3 PLO
family # # time # time # time # time # time
sl lists 139 139 664 139 20 139 9 139 683 139 29
dl lists 70 70 3352 70 50 70 41 67 12552 70 423
sl nested 63 63 2819 63 427 63 182 56 7068 62 804
sls lists 208 206 14222 207 3086 208 37 203 17245 208 1954
trees 243 232 7185 243 6558 243 663 222 34519 242 8089
soundness 79 78 156 79 49 79 23 79 2781 79 39
sat 14 14 85 14 22 13 21 12 1329 14 109
total 816 802 28484 815 10213 815 976 778 76177 814 11447

Table 2. Comparison of solvers on partially instantiated benchmarks (time in sec.)

mark is then decided using Z3’s MBQI mode. This approach can only be expected to
help where there are EPR-like axioms in the benchmarks, and we did have some which
were heavier on these. We found that on singly linked list and tree benchmarks this
hybrid algorithm significantly outperforms all other solver configurations that we have
tried in our experiments. On the other hand, on nested list benchmarks, which make
more heavy use of purely equational axioms, this technique does not help compared to
only using E-matching because the partial instantiation already yields ground formulas.

The results with our hybrid algorithm are summarized in Column Z3 PM of Ta-
ble 2. Since EPR is a special case of local theories, we also tried our E-matching based
algorithm on these benchmarks. We found that the staged instantiation improves perfor-
mance on these as well. The optimization that help on the uninstantiated benchmarks
also work here. These results are summarized in the same table.

Overall, our experiments indicate that there is a lot of potential in the design of
quantifier modules to further improve the performance of SMT solvers, and at the same
time make them complete on more expressive decidable fragments.

7 Conclusion

We have presented a new algorithm for deciding local theory extensions, a class of the-
ories that plays an important role in verification applications. Our algorithm relies on
existing SMT solver technology so that it can be easily implemented in today’s solvers.
In its simplest form, the algorithm does not require any modifications to the solver it-
self but only trivial syntactic modifications to its input. These are: (1) flattening and
linearizing the extension axioms; and (2) adding trigger annotations to encode locality
constraints for E-matching. In our evaluation we have experimented with different con-
figurations of two SMT solvers, implementing a number of optimizations of our base
line algorithm. Our results suggest interesting directions to further improve the quan-
tifier modules of current SMT solvers, promising better performance and usability for
applications in automated verification.

Acknowledgments. We would like to thank the anonymous reviewers for their in-
sightful comments and suggestions.
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CONCLUSION

Algorithm for deciding local theory extensions using E-matching

Uses existing SMT solvers: simple syntactic modifications to input 
For users: http://cs.nyu.edu/~kshitij/localtheories/

Explored additional optimizations for SMT solvers

Future directions: combining with model-based instantiation 
techniques.  


